Matematik 1c: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 48: | Rad 48: | ||
* [http://sv.wikipedia.org/wiki/Negativa_tal Wikipedia] | * [http://sv.wikipedia.org/wiki/Negativa_tal Wikipedia] | ||
* [http://www.youtube.com/watch?v=dd7MB-s_7Ec Mikael Bondestam] | * [http://www.youtube.com/watch?v=dd7MB-s_7Ec Mikael Bondestam] | ||
* [http://www.webbmatte.se/display_page.php?id=149&on_menu=796&no_cache=1578024773 Webbmatte] | |||
* [http://ncm.gu.se/pdf/namnaren/2527_07_2.pdf Lång artikel av Ingvar O Persson som undervisade mig på lärarhögskolan] | * [http://ncm.gu.se/pdf/namnaren/2527_07_2.pdf Lång artikel av Ingvar O Persson som undervisade mig på lärarhögskolan] | ||
Versionen från 28 augusti 2011 kl. 20.05
Grovplanering: v 34-36 Taluppfattning och Aritmetik
Lektion 1 Tal, implikation och ekvivalens
Först måste vi:
- dela ut böcker
- reflektera över resultaten från diagnosen
- gå igenom några uppgifter ur diagnosen
- ge läxa.
Sid 6-11 i boken Matematuik 1C av Sjunnesson, Holmström, Smedhamre. Vi behandlar begreppen naturliga tal, heltal, rationella tal, irrationella tal och reella tal.
Sedan går vi in på begreppen implikation och ekvivalens.
Uppgift: Hitta på egna implikationer och ekvivalenser.
Implikation ==>
Tina har en tax ==> Tina har hund
Ekvivalens <==>
Vi har en täljare och en nämnare <==> Vi har en kvot
Läs: Tal och räkning i Wikibooks
Lektion 2 - Definition sats och bevis
- titta på kursplaneringen
Först: mer genomgång av diagnosen, sid 4-5.
Definition En definition är en bestämning eller avgränsning av ett språkligt uttrycks betydelse. Källa Wikipedia
Exempel: Ett udda tal slutar på 1, 3, 5, 7 eller 9.
Sats Ett bevisat påstående, en matematisk regel.
Bevis Ett bevis är en övertygande argumentationskedja som visar att en viss slutsats gäller. Wikipedia
Bevisa att medelvärdet är lika med medianen för fem på varandra följande tal.
Lektion 3 - Negativa tal
Länkar
- Wikipedia
- Mikael Bondestam
- Webbmatte
- Lång artikel av Ingvar O Persson som undervisade mig på lärarhögskolan