Talet e: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
||
Rad 60: | Rad 60: | ||
= Härledning 1 = | = Härledning 1 = | ||
Vid derivering av exponentialfunktioner av typen <math>a^x</math> , där <math>a</math> är en konstant uppkommer detta mönster. | Vid derivering av exponentialfunktioner av typen <math>a^x</math> , där <math>a</math> är en konstant uppkommer detta mönster. | ||
Rad 119: | Rad 102: | ||
<math>f'(x)=e^x </math> | <math>f'(x)=e^x </math> | ||
= Härledning 2 = | |||
Den här härledningen är svår och kräver att du utökar dina matematikkunskaper på egen hand. | |||
<math> | |||
\begin{eqnarray*} | |||
f'(x)&=& \lim_{h\rightarrow 0} \cfrac{e^{k(x+h)}-e^{kx}}{h} = \\ \\ | |||
&=& \lim_{h\rightarrow 0} \cfrac{e^{kx}(e^{kh}-1)}{h} = \\\\ | |||
&=& e^{kx}\lim_{h\rightarrow 0} \cfrac{e^{kh}-1}{h} = \\\\ | |||
&=& e^{kx}\lim_{h\rightarrow 0} \cfrac{(e)^{kh}-1}{h} = \\\\ | |||
&=& e^{kx}\lim_{h\rightarrow 0} \cfrac{((1+h)^\frac{1}{h})^{kh}-1}{h} = \\\\ | |||
&=& e^{kx}\lim_{h\rightarrow 0} \cfrac{(1+h)^k-1}{h} = \\\\ | |||
&=& e^{kx}\lim_{h\rightarrow 0} \cfrac{\sum_{i=0}^{k}\binom{k}{i}1^{k-i}h^i}{h}= \\\\ | |||
&=& e^{kx}\lim_{h\rightarrow 0} \cfrac{\sum_{i=0}^{k}\binom{k}{i}h^i}{h}= \\\\ | |||
&=& e^{kx}\lim_{h\rightarrow 0} \sum_{i=1}^{k}\binom{k}{i}h^{i-1}{h}= \\\\ | |||
&=& e^{kx}\binom{k}{1}= \\\\ | |||
&=& ke^{kx} | |||
\end{eqnarray*} | |||
</math> | |||
= Uppgifter = | = Uppgifter = |