Delbarhet: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 71: Rad 71:
| 270: talet är delbart med 3 och med 10.
| 270: talet är delbart med 3 och med 10.
|}
|}
= Exempel - MGM =
<pdf>Delbarhet_MGM.pdf</pdf>


= Aktivitet =
= Aktivitet =

Versionen från 30 augusti 2019 kl. 13.38

[redigera]
Mål för undervisningen Delbarhet

Du kommer att lära dig vad delbarhet innebär och hur vi kan jobba med delbarhet för att t.ex. omvandla recept.


Delbarhet är en matematisk operation

Definition

Definition delbarhet:

Ett heltal a är delbart med ett heltal b (b ≠ 0) om a / b = c sådant att kvoten c är ett heltal.


Några olika delare

När vi vill hitta delar så ser vi att det finns vissa mönster i hur talen beter sig. I tabellen nedan ser vi några av de delare som är lättast att identifiera. Att kunna identifiera delare så som 2, 3 och 5 är grundläggande.


Delare Krav Exempel
1 Inga speciella krav. Alla heltal är delbara med 1. 2 är delbart med 1.
2 Den sista siffran är jämn (0, 2, 4, 6, eller 8). 1294: 4 är jämn.
3 Summera talets siffror. Resultatet måste vara delbart med 3. 405 → 4 + 0 + 5 = 9 och 636 → 6 + 3 + 6 = 15 vilka båda är delbara med 3.
16,499,205,854,376 → 1+6+4+9+9+2+0+5+8+5+4+3+7+6 kan summeras till 69 → 6 + 9 = 15 → 1 + 5 = 6, som är delbart med 3.
5 Den sista siffran är 0 eller 5. 495: den sista siffran är 5.
6 Det är delbart med 2 och med 3. 1458: 1 + 4 + 5 + 8 = 18, så det är delbart med 3 och den sista siffran i 1458 är jämn, alltså är talet delbart med 6.
9 Summera siffrorna i talet. Resultatet måste vara delbart med 9. 2880: 2 + 8 + 8 + 0 = 18: 1 + 8 = 9.
10 Sista siffran i talet är 0. 130: den sista siffran är 0.
15 Talet är delbart med 3 och med 5. 390: det är delbart med 3 och med 5.
18 Det är delbart med 2 och med 9. 342: talet är delbart med 2 och med 9.
20 Det är delbart med 10 och tiotalet är jämnt. 360: det är delbart med 10 och 6 är jämn.
30 Det är delbart med 3 och med 10. 270: talet är delbart med 3 och med 10.
[redigera]

Receptomvandling i grupper om 4 personer. Om klassen ska tillverka 40 stycken chokladbollar, hur mycket ingredienser behövs för varje grupp och boll. Varje grupp måste redovisa tydliga beräkningar för att hämta ut ingredienser.

Uppgift

Om klassen ska göra 40 bollar, hur ska vi fördela arbetet på 8 grupper? Hur mycket ingredienser behöver respektive grupp gå fram för att hämta? För att få "checka ut" ingredienserna ska en korrekt och tydlig uträkning visas som "betalning".

Ingredienser

Så per klass blir det 40 bollar: Varje klass behöver:

  • 2 dl socker
  • 2 dl neutral olja
  • 6 dl havregryn
  • 60 ml kaffe
  • 60 ml kakaopulver
  • Kokos att rulla i

Kokossocker är dyrare men mindre sött och de blir inte lika sockerstissiga. Men vanligt strösocker funkar lika bra.

Kokosolja är lättare att hantera än margarin då det inte härsknar i rumstemperatur, och inte är lika... äckligt på händerna.

OBS! Vi vill se bråk. I köket talar man om halva matskedar etc.

Tänk på att i köket använder man måttsatser. En matsked är 15 ml. En tesked är 5 ml.

Lämna in era uträkningar för att få hämta ut ingredienser.


GÖR SÅ HÄR:

  1. Mixa alla torra ingredienser (förutom riven kokos),
  2. addera sedan kaffe och kokosolja och knåda ihop.
  3. Rulla bollar i riven kokos och ställ in i kylen i en stund.
[redigera]

Uppgifter på primtalsfaktorisering och delbarhet.

[redigera]
Swayen till detta avsnitt: Delbarhet


läromedel: Delbarhet


Läs om Delbarhet