Logaritmlagarna: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 18: Rad 18:
Sätt <math> n = \log a </math> och <math>m = \log b </math>
Sätt <math> n = \log a </math> och <math>m = \log b </math>


Potenslagen <math>10^{n+m} = 10^n 10^m</math>
Potenslagen <math>10^{n+m} = 10^n \cdot 10^m</math>  


<math> </math>
ger att <math> 10^{\log a + \log b} = 10^{\log a \cdot 10^{\log b} </math>


<math>  </math>
<math>  </math>

Versionen från 17 januari 2018 kl. 22.32

Mål för undervisningen Logaritmlagarna

Vi härleder logaritmlagarna och övar oss på att tillämpa dem.


Teori

Repetition - Potenslagarna

Följande potenslagar gäller för potenser med reella exponenter.

Potenslagarna

Potenslagarna

Utförlig härledning av potenslagarna

Sätt [math]\displaystyle{ n = \log a }[/math] och [math]\displaystyle{ m = \log b }[/math]

Potenslagen [math]\displaystyle{ 10^{n+m} = 10^n \cdot 10^m }[/math]

ger att [math]\displaystyle{ 10^{\log a + \log b} = 10^{\log a \cdot 10^{\log b} }[/math]

[math]\displaystyle{ }[/math]

[math]\displaystyle{ }[/math]

[math]\displaystyle{ }[/math]

Andra härlednigar finns i:

Sammanfattning av potenslagarna

Definition
Logaritmlagarna

Sats: Multiplikation

lg(a b) = lg a + lg b

Sats: Division

lg (a/b) = lg a - lg b

Sats: Potensräkning

lg ap = p lg a


Bevis av första potenslagen

Aktivitet

Öva i Kunskapsmatrisen.

Lär mer

Swayen till detta avsnitt: Logaritmlagarna



Läs om Logaritmlagarna


Något att klura på:

Vad är log(Googolplex)

Vad är sjätteroten av en centiljon 10600 och hur många miljoner är det ?

Om stora tal

Hur många siffror har primtalet 257885161-1 ?

Tips: log10(1234)=3,09..

Exit ticket

Kunskapsmatrisen - Exit ticket: Potenslagarna.