|
|
Rad 49: |
Rad 49: |
| <!-- Note: the "id" attributes are there to allow direct linking to this table as e.g. [[Divisibility rule#7]]. --> | | <!-- Note: the "id" attributes are there to allow direct linking to this table as e.g. [[Divisibility rule#7]]. --> |
| {| class="wikitable" | | {| class="wikitable" |
| ! Divisor | | ! Delare |
| ! Divisibility condition | | ! Krav |
| ! Examples | | ! Exempel |
| |- | | |- |
| |id=1| '''[[1 (number)|1]]''' | | |id=1| '''1''' |
| | No special condition. Any integer is divisible by 1. | | | Inga speciella krav. Alla heltal är delbara med 1. |
| | 2 is divisible by 1. | | | 2 är delbart med 1. |
| |- | | |- |
| |id=2| '''[[2 (number)|2]]''' | | |id=2| '''2''' |
| | The last digit is even (0, 2, 4, 6, or 8).<ref name="Pascal's-criterion">This follows from Pascal's criterion. See Kisačanin (1998), [{{Google books|plainurl=y|id=BFtOuh5xGOwC|page=101|text=A number is divisible by}} p. 100–101]</ref><ref name="last-m-digits">A number is divisible by 2<sup>''m''</sup>, 5<sup>''m''</sup> or 10<sup>''m''</sup> if and only if the number formed by the last ''m'' digits is divisible by that number. See Richmond & Richmond (2009), [{{Google books|plainurl=y|id=HucyKYx0_WwC|page=105|text=formed by the last}} p. 105]</ref> | | | Den sista siffran är jämn (0, 2, 4, 6, eller 8). |
| | 1294: 4 is even. | | | 1294: 4 är jämn. |
| |- | | |- |
| |id=3 rowspan=2| '''[[3 (number)|3]]''' | | |id=3| '''3''' |
| | Sum the digits. The result must be divisible by 3.<ref name="Pascal's-criterion"/><ref name="apostol-1976">Apostol (1976), [{{Google books|plainurl=y|id=Il64dZELHEIC|page=108|text=sum of its digits}} p. 108]</ref><ref name="Richmond-Richmond-2009">Richmond & Richmond (2009), [{{Google books|plainurl=y|id=HucyKYx0_WwC|page=102|text=divisible by}} Section 3.4 (Divisibility Tests), p. 102–108]</ref> | | | Summera talets siffror. Resultatet måste vara delbart med 3. |
| | 405 → 4 + 0 + 5 = 9 and 636 → 6 + 3 + 6 = 15 which both are clearly divisible by 3.<br>16,499,205,854,376 → 1+6+4+9+9+2+0+5+8+5+4+3+7+6 sums to 69 → 6 + 9 = 15 → 1 + 5 = 6, which is clearly divisible by 3. | | | 405 → 4 + 0 + 5 = 9 och 636 → 6 + 3 + 6 = 15 vilka båda är delbara med 3.<br>16,499,205,854,376 → 1+6+4+9+9+2+0+5+8+5+4+3+7+6 kan summeras till 69 → 6 + 9 = 15 → 1 + 5 = 6, som är delbart med 3. |
| |- | | |- |
| | Subtract the quantity of the digits 2, 5, and 8 in the number from the quantity of the digits 1, 4, and 7 in the number. The result must be divisible by 3. | | |id=5| '''5''' |
| | Using the example above: 16,499,205,854,376 has four of the digits 1, 4 and 7 and four of the digits 2, 5 and 8; ∴ Since 4 − 4 = 0 is a multiple of 3, the number 16,499,205,854,376 is divisible by 3. | | | Den sista siffran är 0 eller 5. |
| | | 495: den sista siffran är 5. |
| |- | | |- |
| |id=4 rowspan=3| '''[[4 (number)|4]]''' | | |id=6| '''6''' |
| | The last two digits form a number that is divisible by 4.<ref name="Pascal's-criterion"/><ref name="last-m-digits"/> | | | Det är delbart med 2 och med 3. |
| | 40,832: 32 is divisible by 4. | | | 1458: 1 + 4 + 5 + 8 = 18, så det är delbart med 3 och den sista siffran i 1458 är jämn, alltså är talet delbart med 6. |
| |- | | |- |
| | If the tens digit is even, the ones digit must be 0, 4, or 8.<br>If the tens digit is odd, the ones digit must be 2 or 6.
| | |id=9| '''9''' |
| | 40,832: 3 is odd, and the last digit is 2.
| | | Summera siffrorna i talet. Resultatet måste vara delbart med 9. |
| |-
| |
| | Twice the tens digit, plus the ones digit is divisible by 4.
| |
| | 40832: 2 × 3 + 2 = 8, which is divisible by 4.
| |
| |-
| |
| |id=5| '''[[5 (number)|5]]'''
| |
| | The last digit is 0 or 5.<ref name="Pascal's-criterion"/><ref name="last-m-digits"/>
| |
| | 495: the last digit is 5.
| |
| |-
| |
| |id=6| '''[[6 (number)|6]]'''
| |
| | It is divisible by 2 and by 3.<ref name="product-of-coprimes">Richmond & Richmond (2009), [{{Google books|plainurl=y|id=HucyKYx0_WwC|page=102|text=divisible by the product}} Section 3.4 (Divisibility Tests), Theorem 3.4.3, p. 107]</ref>
| |
| | 1458: 1 + 4 + 5 + 8 = 18, so it is divisible by 3 and the last digit is even, hence the number is divisible by 6.
| |
| |-
| |
| |id=7 rowspan=6| '''[[7 (number)|7]]'''
| |
| | Forming an [[alternating sum]] of blocks of three from right to left gives a multiple of 7<ref name="Richmond-Richmond-2009"/><ref name="alternating-sum-of-blocks-of-three">Kisačanin (1998), [{{Google books|plainurl=y|id=BFtOuh5xGOwC|page=101|text=third criterion for 11}} p. 101]</ref>
| |
| | 1,369,851: 851 − 369 + 1 = 483 = 7 × 69
| |
| |-
| |
| | Subtracting 2 times the last digit from the rest gives a multiple of 7. (Works because 21 is divisible by 7.)
| |
| | 483: 48 − (3 × 2) = 42 = 7 × 6.
| |
| |-
| |
| | Adding 5 times the last digit to the rest gives a multiple of 7. (Works because 49 is divisible by 7.)
| |
| | 483: 48 + (3 × 5) = 63 = 7 × 9.
| |
| |-
| |
| | Adding 3 times the first digit to the next gives a multiple of 7 (This works because 10''a'' + ''b'' − 7''a'' = 3''a'' + ''b'' − last number has the same remainder)
| |
| | 483: 4×3 + 8 = '20' remainder 6,
| |
| 203: 2×3 + 0 = '6'
| |
| | |
| 63: 6×3 + 3 = 21.
| |
| |-
| |
| | Adding the last two digits to twice the rest gives a multiple of 7. (Works because 98 is divisible by 7.)
| |
| | 483,595: 95 + (2 × 4835) = 9765: 65 + (2 × 97) = 259: 59 + (2 × 2) = 63.
| |
| |-
| |
| | Multiply each digit (from right to left) by the digit in the corresponding position in this pattern (from left to right): 1, 3, 2, -1, -3, -2 (repeating for digits beyond the hundred-thousands place). Then sum the results.
| |
| | 483,595: (4 × (-2)) + (8 × (-3)) + (3 × (-1)) + (5 × 2) + (9 × 3) + (5 × 1) = 7.
| |
| |-
| |
| |id=8 rowspan=5| '''[[8 (number)|8]]'''
| |
| |style="border-bottom: hidden;"| If the hundreds digit is even, the number formed by the last two digits must be divisible by 8.
| |
| |style="border-bottom: hidden;"| 624: 24.
| |
| |-
| |
| | If the hundreds digit is odd, the number obtained by the last two digits plus 4 must be divisible by 8.
| |
| | 352: 52 + 4 = 56.
| |
| |-
| |
| | Add the last digit to twice the rest. The result must be divisible by 8.
| |
| | 56: (5 × 2) + 6 = 16.
| |
| |-
| |
| | The last three digits are divisible by 8.<ref name="Pascal's-criterion"/><ref name="last-m-digits"/>
| |
| | 34,152: Examine divisibility of just 152: 19 × 8
| |
| |-
| |
| | Add four times the hundreds digit to twice the tens digit to the ones digit. The result must be divisible by 8.
| |
| | 34,152: 4 × 1 + 5 × 2 + 2 = 16
| |
| |-
| |
| |id=9| '''[[9 (number)|9]]''' | |
| | Sum the digits. The result must be divisible by 9.<ref name="Pascal's-criterion"/><ref name="apostol-1976"/><ref name="Richmond-Richmond-2009"/> | |
| | 2880: 2 + 8 + 8 + 0 = 18: 1 + 8 = 9. | | | 2880: 2 + 8 + 8 + 0 = 18: 1 + 8 = 9. |
| |- | | |- |
| |id=10| '''[[10 (number)|10]]''' | | |id=10| '''10''' |
| | The last digit is 0.<ref name="last-m-digits"/> | | | Sista siffran i talet är 0. |
| | 130: the last digit is 0. | | | 130: den sista siffran är 0. |
| |-
| |
| |id=11 rowspan=6| '''[[11 (number)|11]]'''
| |
| | Form the alternating sum of the digits. The result must be divisible by 11.<ref name="Pascal's-criterion"/><ref name="Richmond-Richmond-2009"/>
| |
| | 918,082: 9 − 1 + 8 − 0 + 8 − 2 = 22 = 2 × 11.
| |
| |-
| |
| | Add the digits in blocks of two from right to left. The result must be divisible by 11.<ref name="Pascal's-criterion"/>
| |
| | 627: 6 + 27 = 33 = 3 × 11.
| |
| |-
| |
| | Subtract the last digit from the rest. The result must be divisible by 11.
| |
| | 627: 62 − 7 = 55 = 5 × 11.
| |
| |-
| |
| | Add the last digit to the hundredth place (add 10 times the last digit to the rest). The result must be divisible by 11.
| |
| | 627: 62 + 70 = 132: 13 + 20 = 33 = 3 × 11.
| |
| |-
| |
| | If the number of digits is even, add the first and subtract the last digit from the rest. The result must be divisible by 11.
| |
| | 918,082: the number of digits is even (6) → 1808 + 9 − 2 = 1815: 81 + 1 − 5 = 77 = 7 × 11
| |
| |-
| |
| | If the number of digits is odd, subtract the first and last digit from the rest. The result must be divisible by 11.
| |
| | 14,179: the number of digits is odd (5) → 417 − 1 − 9 = 407 = 37 × 11
| |
| |-
| |
| |id=12 rowspan=2| '''[[12 (number)|12]]'''
| |
| | It is divisible by 3 and by 4.<ref name="product-of-coprimes"/>
| |
| | 324: it is divisible by 3 and by 4.
| |
| |-
| |
| | Subtract the last digit from twice the rest. The result must be divisible by 12.
| |
| | 324: 32 × 2 − 4 = 60 = 5 × 12.
| |
| |-
| |
| |id=13 rowspan=4| '''[[13 (number)|13]]'''
| |
| | Form the [[alternating sum]] of blocks of three from right to left.<ref name="alternating-sum-of-blocks-of-three"/>
| |
| | 2,911,272: 2 - 911 + 272 = -637
| |
| |-
| |
| | Add 4 times the last digit to the rest. The result must be divisible by 13.
| |
| | 637: 63 + 7 × 4 = 91, 9 + 1 × 4 = 13.
| |
| |-
| |
| | Subtract the last two digits from four times the rest. The result must be divisible by 13.
| |
| | 923: 9 × 4 - 23 = 13.
| |
| |-
| |
| | Subtract 9 times the last digit from the rest. The result must be divisible by 13.
| |
| | 637: 63 - 7 × 9 = 0.
| |
| |-
| |
| |id=14 rowspan=2| '''[[14 (number)|14]]'''
| |
| | It is divisible by 2 and by 7.<ref name="product-of-coprimes"/>
| |
| | 224: it is divisible by 2 and by 7.
| |
| |-
| |
| | Add the last two digits to twice the rest. The result must be divisible by 14.
| |
| | 364: 3 × 2 + 64 = 70.<br />1764: 17 × 2 + 64 = 98.
| |
| |-
| |
| |id=15| '''[[15 (number)|15]]'''
| |
| | It is divisible by 3 and by 5.<ref name="product-of-coprimes"/>
| |
| | 390: it is divisible by 3 and by 5.
| |
| |-
| |
| |id=16 rowspan=4| '''[[16 (number)|16]]'''
| |
| |style="border-bottom: hidden;"| If the thousands digit is even, examine the number formed by the last three digits.
| |
| |style="border-bottom: hidden;"| 254,176: 176.
| |
| |-
| |
| | If the thousands digit is odd, examine the number formed by the last three digits plus 8.
| |
| | 3408: 408 + 8 = 416.
| |
| |-
| |
| | Add the last two digits to four times the rest. The result must be divisible by 16.
| |
| | 176: 1 × 4 + 76 = 80.
| |
| | |
| 1168: 11 × 4 + 68 = 112.
| |
| |-
| |
| | Examine the last four digits.<ref name="Pascal's-criterion"/><ref name="last-m-digits"/>
| |
| | 157,648: 7,648 = 478 × 16.
| |
| |-
| |
| |id=17 rowspan=2| '''[[17 (number)|17]]'''
| |
| | Subtract 5 times the last digit from the rest.
| |
| | 221: 22 − 1 × 5 = 17.
| |
| |-
| |
| | Subtract the last two digits from two times the rest.
| |
| | 4,675: 46 × 2 - 75 = 17.
| |
| |-
| |
| |id=18| '''[[18 (number)|18]]'''
| |
| | It is divisible by 2 and by 9.<ref name="product-of-coprimes"/>
| |
| | 342: it is divisible by 2 and by 9.
| |
| |-
| |
| |id=19 rowspan=2| '''[[19 (number)|19]]'''
| |
| | Add twice the last digit to the rest.
| |
| | 437: 43 + 7 × 2 = 57.
| |
| |-
| |
| | Add 4 times the last two digits to the rest.
| |
| | 6935: 69 + 35 × 4 = 209.
| |
| |-
| |
| |id=20 rowspan=2| '''[[20 (number)|20]]'''
| |
| | It is divisible by 10, and the tens digit is even.
| |
| | 360: is divisible by 10, and 6 is even.
| |
| |-
| |
| |The number formed by the last two digits is divisible by 20.<ref name="last-m-digits"/>
| |
| | 480: 80 is divisible by 20.
| |
| |-
| |
| |id=21 rowspan=2|'''[[21 (number)|21]]'''
| |
| |Subtract twice the last digit from the rest.
| |
| |168: 16 − 8 × 2 = 0.
| |
| |-
| |
| |It is divisible by 3 and by 7.<ref name="product-of-coprimes"/>
| |
| |231: it is divisible by 3 and by 7.
| |
| |-
| |
| |id=22| '''[[22 (number)|22]]'''
| |
| |It is divisible by 2 and by 11.<ref name="product-of-coprimes"/>
| |
| |352: it is divisible by 2 and by 11.
| |
| |-
| |
| |id=23 rowspan=2| '''[[23 (number)|23]]'''
| |
| |Add 7 times the last digit to the rest.
| |
| |3128: 312 + 8 × 7 = 368. 36 + 8 × 7 = 92.
| |
| |-
| |
| |Add 3 times the last two digits to the rest.
| |
| |1725: 17 + 25 × 3 = 92.
| |
| |-
| |
| |id=24| '''[[24 (number)|24]]'''
| |
| |It is divisible by 3 and by 8.<ref name="product-of-coprimes"/>
| |
| |552: it is divisible by 3 and by 8.
| |
| |-
| |
| |id=25| '''[[25 (number)|25]]'''
| |
| |The number formed by the last two digits is divisible by 25.<ref name="last-m-digits"/>
| |
| |134,250: 50 is divisible by 25.
| |
| |-
| |
| |id=26| '''[[26 (number)|26]]'''
| |
| |It is divisible by 2 and by 13.<ref name="product-of-coprimes"/>
| |
| |156: it is divisible by 2 and by 13.
| |
| |-
| |
| | rowspan="3" id="27" |'''[[27 (number)|27]]'''
| |
| |Sum the digits in blocks of three from right to left. The result must be divisible by 27.
| |
| |2,644,272: 2 + 644 + 272 = 918.
| |
| |-
| |
| |Subtract 8 times the last digit from the rest. The result must be divisible by 27.
| |
| |621: 62 − 1 × 8 = 54.
| |
| |-
| |
| |Subtract the last two digits from 8 times the rest. The result must be divisible by 27.
| |
| |6507: 65 × 8 - 7 = 520 - 7 = 513 = 27 × 19.
| |
| |- | | |- |
| |id=28| '''[[28 (number)|28]]''' | | |id=15| '''15''' |
| |It is divisible by 4 and by 7.<ref name="product-of-coprimes"/> | | | Talet är delbart med 3 och med 5. |
| |140: it is divisible by 4 and by 7. | | | 390: det är delbart med 3 och med 5. |
| |- | | |- |
| | rowspan="2" id="29" | '''[[29 (number)|29]]''' | | |id=18| '''18''' |
| |Add three times the last digit to the rest. The result must be divisible by 29. | | | Det är delbart med 2 och med 9. |
| |348: 34 + 8 × 3 = 58. | | | 342: talet är delbart med 2 och med 9. |
| |- | | |- |
| |Add 9 times the last two digits to the rest. | | |id=20| '''20''' |
| |5510: 55 + 10 × 9 = 145 = 5 × 29. | | | Det är delbart med 10 och tiotalet är jämnt. |
| | | 360: det är delbart med 10 och 6 är jämn. |
| |- | | |- |
| |id=30| '''[[30 (number)|30]]''' | | |id=30| '''30''' |
| |It is divisible by 3 and by 10.<ref name="product-of-coprimes"/> | | | Det är delbart med 3 och med 10. |
| |270: it is divisible by 3 and by 10. | | | 270: talet är delbart med 3 och med 10. |
| |} | | |} |