Derivatan av 2^x: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
||
Rad 2: | Rad 2: | ||
{{#ev:youtube| jpNyQSXqOaA | 340 | right |Sid 193-195 - Derivatan av funktionen f(x)=a^x}} | {{#ev:youtube| jpNyQSXqOaA | 340 | right |Sid 193-195 - Derivatan av funktionen f(x)=a^x}} | ||
{{malruta| | {{malruta| | ||
Denna lektion kommer du att lära dig hur | Denna lektion kommer du att lära dig hur man deriverar exempelvis <math>y = 2^x</math>. | ||
}} | }} | ||
Versionen från 8 april 2016 kl. 11.12
Definition |
---|
Derivatan av [math]\displaystyle{ y = a^x }[/math]
|
Härledning
Vid derivering av funktionen [math]\displaystyle{ a^x }[/math] där [math]\displaystyle{ a }[/math] är en konstant:
[math]\displaystyle{ a }[/math] kan skrivas som [math]\displaystyle{ e^{\ln a} }[/math] (se naturliga logaritmen]]) vilket innebär att [math]\displaystyle{ a^x }[/math] även kan substitueras med [math]\displaystyle{ e^{\ln a x} }[/math].
[math]\displaystyle{ f(x)= e^{\ln a x} }[/math]
[math]\displaystyle{ f^\prime(x) =\lim_{h\to 0}\frac{e^{\ln a (x+h)}-e^{\ln a x}}{h} }[/math]
[math]\displaystyle{ f'(x)=\lim_{h\to 0}\frac{e^{\ln a h}\cdot(e^{\ln a x}-1)}{h} }[/math]
[math]\displaystyle{ f'(x)=\lim_{h\to 0}e^{\ln a x} \cdot\frac{e^{\ln a h}-1}{h} }[/math]
Om [math]\displaystyle{ \ln a }[/math] nu tillsätts med ett värde, exempelvis 6 blir derivatan :
[math]\displaystyle{ f(x)= e^{6x} }[/math]
[math]\displaystyle{ f'(x)=\lim_{h\to 0}e^{6x} \cdot\frac{e^{6h}-1}{h} }[/math]
[math]\displaystyle{ f'(x)=6\cdot e^{6x} }[/math]
Detta innebär att denna allmänna formel för exponentialfunktioner av typen [math]\displaystyle{ e^{kx} }[/math], där [math]\displaystyle{ k }[/math] är en konstant lyder:
[math]\displaystyle{ f(x)=e^{kx} }[/math]
[math]\displaystyle{ f'(x)=k \cdot e^{kx} }[/math]
Om [math]\displaystyle{ k }[/math] substitueras med [math]\displaystyle{ \ln a }[/math] blir derivatan av exponentialfunktionen [math]\displaystyle{ a^x }[/math] följande, om [math]\displaystyle{ a^x=e^{\ln a x} }[/math]:
[math]\displaystyle{ f(x)=a^x }[/math]
[math]\displaystyle{ f'(x)=\ln a \cdot a^x }[/math]