Lektion 9 - Mer om förenkling: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
(Skapade sidan med 'Sid 69 - 71.')
 
Ingen redigeringssammanfattning
Rad 1: Rad 1:
Sid 69 - 71.
== Förenkling genom faktorisering - Wolfram Alpha ==
 
{{Lm3c | mer om förenkling | 69 - 71}}
 
=== Syfte ===
 
Pröva hur Wolfram Alpha gör med rationella uttryck.
 
=== Övning 1 ===
 
:<math>  \frac{2x-4x^2}{1-2x} \ </math>
<br />
 
: Den här kan du klippa in i Wolfram Alpha: (2x-4x^2)/(1-2x)
 
# Vad blir svaret?
# Hur ser grafen ut?
#  Vad har funktionen för nollställer?
# Har den någon asymptot? 
# Räkna för hand och se att det stämmer.
 
=== Övning 2 ===
 
:<math>  \frac{2x-5x^2}{1-2x} \ </math>
<br />
 
:  Den här kan du klippa in i Wolfram Alpha: (2x-5x^2)/(1-2x)
 
# Wolfram gör polynomdivision, vad är det? Tips: Quotient and remainder:Step-by-step solution
# Vad blir resultatet?
# Beskriv Grafen

Versionen från 22 oktober 2015 kl. 21.16

Förenkling genom faktorisering - Wolfram Alpha

Ma3C: mer om förenkling , sidan 69 - 71


Syfte

Pröva hur Wolfram Alpha gör med rationella uttryck.

Övning 1

[math]\displaystyle{ \frac{2x-4x^2}{1-2x} \ }[/math]


Den här kan du klippa in i Wolfram Alpha: (2x-4x^2)/(1-2x)
  1. Vad blir svaret?
  2. Hur ser grafen ut?
  3. Vad har funktionen för nollställer?
  4. Har den någon asymptot?
  5. Räkna för hand och se att det stämmer.

Övning 2

[math]\displaystyle{ \frac{2x-5x^2}{1-2x} \ }[/math]


Den här kan du klippa in i Wolfram Alpha: (2x-5x^2)/(1-2x)
  1. Wolfram gör polynomdivision, vad är det? Tips: Quotient and remainder:Step-by-step solution
  2. Vad blir resultatet?
  3. Beskriv Grafen