Volymsberäkning med integral: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 58: Rad 58:
== Repetition - integraler ==
== Repetition - integraler ==


{{TIS|Henrik Jansson|
: [[Media:Övningsuppgifter_på_integraler_m.m_NP_Ma_D_vt_2005.pdf | Uppgifter Integraler 1]]
}}


{{TIS|Henrik Jansson|
{{TIS|Henrik Jansson|
: [[Media:Övningsuppgifter_på_integraler_m.m_NP_Ma_D_vt_2005.pdf | Uppgifter Integraler 1]]
: [[Media:Övningsuppgifter_på_integraler_m.m_NP_Ma_D_vt_2005.pdf | Uppgifter Integraler 1]]
}}
}}

Versionen från 18 mars 2015 kl. 22.55

Rotation kring x-axeln

Läs på Wikipedia skriver om Rotationsvolym

Liber Ma 4 Exempel 2 sid 176

GGBTube

hemuppgift att räkna volymsintegraler med GeoGebra

Uppgift
 Lös uppgift 3310 a med GeoGebra

Beräkna volymen av den rotationskropp som bildas då följande område roterar kring x-axeln. Området begränsas av:

[math]\displaystyle{ y = 4 x - x^2 }[/math]
och
[math]\displaystyle{ y = 3 }[/math]


Du får gärna titta på GeoGebran ovan för att se hur du använder GeoGebra för att lösa volymsintegraler.

Denna uppgift är litet svårare eftersom rotationskroppen har en urgröpt form.

Redovisning: Spara din GeoGebra med ditt namn följt av ordet volymsintegral och ladda upp den på Progress, F2 Procedur.

Bedömning: Nedan citeras kunskapskraven för procedurförmåga på A-nivå:

I arbetet hanterar eleven flera procedurer, inklusive avancerade aritmetiska och algebraiska uttryck, och löser uppgifter av standardkaraktär med säkerhet och på ett effektivt sätt, både utan och med digitala verktyg.


GGB i 3D

GGBTube

Rotation kring y-axeln

GGBTube

Repetition - integraler

Henrik Jansson har skapat och delar

Uppgifter Integraler 1


Henrik Jansson har skapat och delar

Uppgifter Integraler 1