Algebra för Ma1A: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
(Skapade sidan med '== Tankegympa == Från Quora: Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity...')
 
Ingen redigeringssammanfattning
Rad 5: Rad 5:
Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity
Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity


                            n^2 = (n-25) \cdot 100 + (n-50)^2
:                            n^2 = (n-25) \cdot 100 + (n-50)^2


For example,
For example,


                            62^2 = 37 \cdot 100 + 12^2 = 3844
:                            62^2 = 37 \cdot 100 + 12^2 = 3844
 
:
                            44^2 = 19 \cdot 100 + 6^2 = 1936
:                            44^2 = 19 \cdot 100 + 6^2 = 1936
 
:
                            77^2 = 52 \cdot 100 + 27^2 = 5929
:                            77^2 = 52 \cdot 100 + 27^2 = 5929


These mental computations can be done very quickly with just a little practice, so amaze your friends with how fast you can square two digit numbers!
These mental computations can be done very quickly with just a little practice, so amaze your friends with how fast you can square two digit numbers!

Versionen från 1 oktober 2014 kl. 21.19

Tankegympa

Från Quora:

Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity

n^2 = (n-25) \cdot 100 + (n-50)^2

For example,

62^2 = 37 \cdot 100 + 12^2 = 3844
44^2 = 19 \cdot 100 + 6^2 = 1936
77^2 = 52 \cdot 100 + 27^2 = 5929

These mental computations can be done very quickly with just a little practice, so amaze your friends with how fast you can square two digit numbers!