Algebra för Ma1A: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) (Skapade sidan med '== Tankegympa == Från Quora: Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity...') |
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
||
Rad 5: | Rad 5: | ||
Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity | Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity | ||
: n^2 = (n-25) \cdot 100 + (n-50)^2 | |||
For example, | For example, | ||
: 62^2 = 37 \cdot 100 + 12^2 = 3844 | |||
: | |||
: 44^2 = 19 \cdot 100 + 6^2 = 1936 | |||
: | |||
: 77^2 = 52 \cdot 100 + 27^2 = 5929 | |||
These mental computations can be done very quickly with just a little practice, so amaze your friends with how fast you can square two digit numbers! | These mental computations can be done very quickly with just a little practice, so amaze your friends with how fast you can square two digit numbers! |
Versionen från 1 oktober 2014 kl. 21.19
Tankegympa
Från Quora:
Wu's Squaring Trick, named after the famous Scott Wu, is a technique used to quickly square numbers over 25 in your head. It uses the identity
- n^2 = (n-25) \cdot 100 + (n-50)^2
For example,
- 62^2 = 37 \cdot 100 + 12^2 = 3844
- 44^2 = 19 \cdot 100 + 6^2 = 1936
- 77^2 = 52 \cdot 100 + 27^2 = 5929
These mental computations can be done very quickly with just a little practice, so amaze your friends with how fast you can square two digit numbers!