Funktioner 2C: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 149: | Rad 149: | ||
[[Fil:Graph of common logarithm.png|300px|miniatyr|Graf över tiologaritmen]] | [[Fil:Graph of common logarithm.png|300px|miniatyr|Graf över tiologaritmen]] | ||
Tisdag | |||
Ett praktiskt val av bas när man använder den decimala notationen är (10-logaritmen): den exponent ''x'' till vilken man ska upphöja 10 för att få talet ''a'': | Ett praktiskt val av bas när man använder den decimala notationen är (10-logaritmen): den exponent ''x'' till vilken man ska upphöja 10 för att få talet ''a'': | ||
Versionen från 13 april 2012 kl. 14.51
kan du rita en sån här? <ggb_applet width="681" height="450" version="4.0" ggbBase64="UEsDBBQACAAIAIOsdkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAIOsdkAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VpZb9tIEn7O/IoGnyOpb5KBnIHjxNkAmQNwdrHYlwFFtqgeU6SWpGQ5mB8/1d2kROpILDsxPIGNKH0Vu7qOr6pa1Pjn9TxDK1VWusjPPDLEHlJ5XCQ6T8+8ZT0dBN7Pr38ap6pI1aSM0LQo51F95nFDqZMzT04mVDDBBn4QsAFnQgwmTMqBP+WRmiR0gmPqIbSu9Ku8+DWaq2oRxeoqnql59LGIo9oyntX14tVodHNzM2xZDYsyHaXpZLiuEg/BMfPqzGs6r2C73kM3zJJTjMnov798dNsPdF7VUR4rDxkRlvr1Ty/GNzpPiht0o5N6BqcPQg/NlE5nIJMIhIdGhmgBClmouNYrVcGjnaGVuZ4vPEsW5Wb9heuhbCOOhxK90okqzzw8pIxJn4SgniAIZShAHUWpVV43xKRhOmq3G6+0unH7mp5lyT1UF0U2icyW6K+/EMUUo5emIa6h0EjplrCbw8w11DXcNcLRcPc4d6Tc0XBHw5mHVrrSk0ydedMoq0CFOp+WYL7NuKpvM2XP00xsxScvQaZKfwZihsFPnM5hHuOX5iPhw83CqC8k6XCty+WJTFuWgoi7s6QPYclalkSSfZZUHJFSfkG57gx3EZOIjmaBlf1nP3scGT2Boxs/jKHkjyLieNQiZdyAA1UzQ9tYslbzysCFhUiExusJEgAN6YOTC0RCaHyKAAyICMQFDEmApGl9xHxY4IihABk6wpDFhgjgP+7bzSQSsJmZ9QGSiAAjjgRDxEKKIwASsrAEiFIGFEIgAQ8Z9oSaLZhEXMKIBYjDGQ0ifQKEDB6EMbCniBHEzMPER1QiafYj3CBdBubosCVFEiNJzIYAagC0AzPQB4gZaWSjLp0vlnVPRfE8abt1sdjYAqghHG2jngtPvaD4YpxFE5VBnrgylkRoFWUGEZbRtMhr1BqRurm0jBYzHVdXqq7hqQr9Ga2ij1Gt1pdAXbW8LW1c5NXvZVFfFNlynlcIxUWGN2cuMtLp082pYcA6C7y7IDoLstP3D/ItYAUtKwX8i7JqyaMk+WAotqEBNPlbnt2+KVV0vSh0X4zxyKacsVrGmU50lP8HnNVwMXpBbQay0arNQJzR9iBFmVzdVuDBaP0/VRagx5AMw+6fh27dChW0vwLoq+LIYI+H/RUDzNsja4F0vNVqY6JorbbSpqWBdmfwoXpTZNspq4CLaFEvS1s9QHQsjVjneZop6yQW2pCa4+tJsb5y3sHcXp9uFzDC7gST1CoelUY2UE/atBPXWhpztA0VtjTYUuDW3XSyWSchtRS2nbjWUoH/uqM1opJWTIJbNrqyIQ17DXDacGW832T6Za7rj+2g1vH1VlTzwK/L+URtfKi/J/lWe45HO042vlZlrrLGp8GYy2JZOYh23D1RsZ7D0C00KomMuf4NB3CziUpL1R48s5WZU5hdxV133Zu2W12WxfxDvvoEvrBzgPGoPeW4iku9MD6HJpAHrtXWqxJdRZBGku5zBoQgemzSBainNqoBeC7rWVHa4guiCrQGe5maQ6WFaute1kM3aj63NZzRJyomf0Jg2+Q+t741GCwfdDXrlFG2mEWmzmuEzqJbVfbUYPf7pUh2lQO6txIAyhfOtgulnFu480JnAdtZNPWiFGi7Quszb4CHMgBEG/am89mV8K6GNcIakPUis5vdsRS4j9PTVzT25p+vMTIkvFGYz7+JwuJiPo/yBOW2uLnQZZwpb5ttI2w8DUXEqM/pZlm3C7HbrNliT/vg5zreaDf+ivY78h5TP76/8reRsoYsfg03lcpWz3UTuG3nXzpJlK3gXCbRqcpXcFJIonAFxM0F8xY7/uhzO7Mm1pfNGmmmPpOOacDspV6j85b+vKU6h+w/oEMWEtLJZOBj56zhcc5bcJyLFjDucP/PnTyVi62mttFTHd/Dvm+cfc/37JucYt/k2b6H7UuGXAZ+v/Tp2XfgUN0YGHD9AAN/yGtIrSDTjo1jZ+MEGrpRQMfUF182dT+QXtwrkJriLXXNxDX3NfY2HuIh8QPMAu4L36chY1La8EiHNJBESsp4EPjSD9hjBcuLY2BSp4BJPYPpIJjgDsEpFcwXlIUSC7YbKwcHPcJC64BPfAegJc7+ygGN7rnB21OA9vbJAM1c3npq9RucMd7T6aMVJW+dni/2FDw9BWfTZ5wdxJkckgDLLc7oHs4OOUQDsz2X+H4wmx6D2btTYPbuycCMDkPR+1ZDNNX+t7kd3QFX744V++kpuEqfcXUEVzgQ4gu1/uCQBzSV4YMq/7sVhvtAujwFSJdPBkgYkj0JJREU6gUfQziyQDJalL3oRB8LWJfHCsPZKcCaPQPr2C2aB7JTGVK5Xxnuu4RB1gGX+H4JKz2Gs/en4Oz9k8EZHRLcVaq/gRnu6tQPHwtm74/lr+tTYHb9DLMj9y/AF+GScl9iFvLA389few7RgGzXIR4Ast+L7DYt8sMR9r2DmClkmLsncHctF4eib7MVaerJP4h7OrUdeF7ZDuyQ2A7sEduOPPOir0HWHbL1mQ2n+5r4ZHckglmHFGTPI8kpHnn8C/ZKpWa0Pcgf5H7I+cJR7x2bjJdL3P2jvqunyTCgvQW/CU8CLjIcUxaEPCRhED4AjzuOreeLTMe63jhgZr7m32QLXeT7L7iulVqYN4u/5Z/KKK/Mj5ccTefF2R0Nkz4pw5Ch7EWD9iVQILpXSuqswsGKkJQJ9bkEqwQ/jE3UE7OJ4LtfmbpUDtG8E9CFu4oKc82nP6BVkqdklb0Ihl0AG5gI1qCDCEy2MevHCVnxUzLEXsTa3ifF7tdgNpNIX0gRUswoDymR/IcxS/SUjLITskiTR/oRS7qXP3jIQp92bELEP8goo+6vRuyvs5ofGr/+G1BLBwi7UrqBaAgAAAUtAABQSwECFAAUAAgACACDrHZA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAIOsdkC7UrqBaAgAAAUtAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA/wgAAAAA" showResetIcon = "false" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Funktion och graf
s 146
Teori funktionen f(x)
Vad står f(x) för? Funktionen f med variabeln x.
Lösa ekvationer med grafer
Definitionsmängd = x-värdena
Värdemängd = y-värdena
Hur ritar man en parabel om man vet funktionen?
Man gör en värde tabell. Tag ett lämpligt x-värde och skriv i tabellens x-kolumn. Räkna ut vad y blir genom att sätta in x-värdet i funktion. Skriv y-värdet i dess kolumn. Nu har du det första talparet. Upprepa med ett antal lämpliga x-värden tills du fått minst tre gärna fem talpar. Det är viktigt att du väljer talparen så att du hittar vertex (min- eller maxpunkten).
<ggb_applet width="852" height="423" version="4.0" ggbBase64="UEsDBBQACAAIAAZKi0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAZKi0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vrbjts2Gr5On4LQxV7FY550cNaTwp4mTYC0DTrZYrF3tETb7MiiIlE+BH2cvklfbH+Ski3bg3Qmk90EnQKZ8PTzP3z/iZpk/O12laO1rGqli8uAXOAAySLVmSoWl0Fj5oMk+Pb5N+OF1As5qwSa62olzGXALaXKLoMkjTkRs/mAJwQPOI74YBRLOsBslqRzFol5lAYIbWv1rNA/ipWsS5HK63QpV+KNToVxgpfGlM+Gw81mc9GJutDVYrhYzC62dRYgULOoL4N28gzYHV3aMEdOMSbDf//wxrMfqKI2okhlgKwJjXr+zZPxRhWZ3qCNyswStI/AjKVUiyXYFDIeoKElKgGQUqZGrWUNV3tLZ7NZlYEjE4U9f+JnKN+bE6BMrVUmq8sAX4QhZTQME8JGICFJAqQrJQvT0hIv84wHPmJC43iEo1EcxZyTJCK3MxkPO5XGayU3Xjc7c2qDdUbrfCYsR/Tbb4hiitFTOxA/UBiiyB9hv4eZH6gfuB9CT8P9de5JuafhnoazAK1VrWa5BMSqBryginkFEXAZzEVew7o2u1w6ddqNg/XsKZhUqw9ATBlMvdvAUIyf2p8IfjjGHXZ7G+nDhLKD0NG5UBreLpQ8ROjeThbTu9tJop7MludeqNfhLjJJiA8ywTr3x/2cSWT0HhL9+mECI/5/MXE87FJl3GYHqpeWtvWkkava5gsboXBkw56gEHIjiiHKQ0RGMMQUQTYgEiIewpIkKLJjjFgMBxwxlCBLRxhyyREm8BePHbMIhcDM7saQk4iAII5ChojLKY4gk5DLS8hRyoAiDFEIl6x4Qi0LFiEewYoliIOONiVjAoQMLsIaxFPECGL2MokRjVBk+RFuUz1KrOrAkqIIo4hYhpDVkNE+m4E+QcxaE7VwqaJsTAtRi3q6yjq4jC7320AOBelQO32BOiqtT8a5mMkcus21dSVCa5FDqAVO0lwXBnVejPzeohLlUqX1tTQGbtXoV7EWb4SR25dAXXeyHW2qi/ptpc2VzptVUSOU6hx3isKc9Ob0YIzOWe+A9w/C3kHUm8e3ytVwgppagnxd1R25yLLXluJQGwDKn4p8N62kuCm1OjZjPHSNayybNFeZEsUvEK1WisUFdX3M1Y6uj9l60Sqiq+x6V0MIo+1/ZKVtXWEXCQ5HPKQ8HjFb5Xb+hIX4IokpwyO4n1CbfXUqbO6F5IJTxikPkyiOo2QEobC7/WxEvWS53jtIbOXe9kVlE7u12y5e11OdH7ac9VeiNE3lHiBgVGVtmhSLXLoIcYkN3T29menttQ8N5nm925XStk2nwGzhUEdQGqD3AkE7zvzoaKxmeyrsaLCjwF2sqWx/TsA0S+HGmR8dFQSvV621lHRmEtyJUbUraDg4qiwu8u1boSmUedMtjEpvDpZa+h+b1Uzu4+eYJflMLMfDk/ga1yWEY1YvpTS3RpzrymcRB5fmVzLPr/ukce+NRWNPWMvcFgFdILS8Tiud5w6fdW+eurR1OlfWxLYq5GKnG1sXwI6X8BptcjHtdQC7/b3Dv20RsH7luU4Pncnu/nLr7hRk1bJ6C++o/IipryKvABR5dOFn4O820T7D81xvrqHIKZG/yJTRB+3c0TtoM+9Uuc8K+b6B059hUJXMjnL/zAvjG1mBZm2ZgQxrdFP7qtmrQBnIXsHSH7SBKmwS/QsCw+9mclHJLp5y9+T2YexOjyrI2bZj9bLSq9fF+h1k6IkC42Gn5bhOK1XaQoBm0JtvDubB47YW0NqP7LV1ETDxgWGUsSELoDVmaTGEO1DoYbTlMJcreP4i45Ie7ql0H/6pe5xb3yA9+xXC7CQ9ekDB+UkFCIkvEphbb5VLYV/feB964OY+EI7jDzo7hQfQdzZA6S191pVS+nw1bZlCJbBzVa6nz6GYGOhyN/CWhygJe5fs5JXKMukSw9datZDFGsyEJgMfWtgrjHa4/Z770E220PAGbrYjLdEH4s8cI9C5Uls0wR3ZpCObQHschG7Gui1ojNRNQveR0+ryvvDq177eyG2Zq1SZtsZ4pzlHr1aiyFDhHnOvCwPVCCwIDg8Mga0jkQAVdhModzCle5OhAHQ0E8+6ZXgWGa6j7D0/+ZPIOFTYfmDYVrjww8wPdwyMn+bzWhq0Bb3B8TsY+MfCxiVbbcm9A8Hzzkc9FzlzXHF1F8P+7iFL6cfhfuswOYX6FNjpfYCdfhKwhPrO7Ma2M38CttRhlTwwI8ntGXlwCmmdQr+gU67u45SrL+iUQeKwGoT/a6/Q1ivkC3rlu/t45bsvmSp3KUOfwyvsK8iVF/fxyouvwCsPfVP8qVf4Z24r0N0reKFYpbo+ADrA7mXwj/eNNv/cDdZ//F5l0q/c9WMnwHd7r4mQcyd0v9e5w8ut+3b7xGfbxw2bHBu2vZdhk6/HsCMli2Ylq97DeUKdnnC16Rh0oj6f7uSOupOHvqVFs1W5EtXO8+t96t4RjukZHOFjhmPCTuEgjxmO6Rkc9DHDMeF/w9GPjjM4HnWyTMJTONhjhmN6BsejTpZJdAoHf8xwTM/g+Iu/O4b93/u6f/Jq/w/I8/8CUEsHCJegCiaDBwAAoCIAAFBLAQIUABQACAAIAAZKi0DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgABkqLQJegCiaDBwAAoCIAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAAaCAAAAAA=" showResetIcon = "false" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Andragradsfunktioner
Det kan vara intressant att som bakgrund titta på denna sida om kägelsnitt.
Parabelns ekvation
Definitioner
Brännpunkt kallas också fokus Styrlinje är en linje som används för att konstruera parabeln
GeoGebra som visar samma avstånd
<ggb_applet width="918" height="406" version="4.0" ggbBase64="UEsDBBQACAAIAIqJikAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACKiYpAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVY247bRhJ9dr6iwWdL6jtJQ+NAk4WxBiZxgPEuFvvWJHuk9lAkl6Q0kpHfyZfsj211N0lR0lieSxJgg4z7Vl3VVadu1PzH3TpHW103piyuAjLFAdJFWmamWF4Fm/ZuEgU/vv9hvtTlUie1QndlvVbtVcAtpcmugkSFklCeTaIklhMeSzGJYhzBUogM8zAVcRYgtGvMu6L8Ra11U6lU36YrvVY3ZapaJ3jVttW72ezh4WHai5qW9XK2XCbTXQMM4JlFcxV0k3fA7ujSA3PkFGMy+9fPN579xBRNq4pUB8iqsDHvf3gzfzBFVj6gB5O1q6sgpjJAK22WK9BJcBGgmSWqwCCVTluz1Q1cHS2dzu26ChyZKuz5Gz9D+aBOgDKzNZmurwI8pYwQTAQhURhjMFAUoLI2umg7YtIJnfXs5lujHzxfO3MieYDasswTZVmi335DFFOM3tqB+IHCIKU/wn4PMz9QP3A/CE/D/XXuSbmn4Z6GswBtTWOSXF8FdypvwISmuKsBvmHdtPtcu/d0Gwf1yVvQqTFfgZhh8BNvc9jH+K39k/DH7cHsWEkyktrWm2cK7UXKOH66SPoakawXSQk/F0nFN7SUF4zr3/AUNYkYWRZEuf/d35lERp8h0a9fJ1Dyv0TF+ayPlHkXHKhZWdoOyVavGxsuLEYitl5PkIDQkCE4uUAkhiGkCIIBEYG4gCWJkLRjiFgIBxwxFCFLRxhysSEi+IeHjplEApjZ3RBCEhEQxJFgiLiQ4ggCCbmwhBClDCiEQAIuWfGEWhZMIi5hxSLE4Y02IkMChAwuwhrEU8QIYvYyCRGVSFp+hNtIl5F9OrCkSGIkiWUIQQ0B7YMZ6CPErDayM5cpqk17ZKJ0nfXTtqwGLIAa0tEh6/n0dJQU38xzlegc6sStRRKhrcptRDhBd2XRoh5E7veWtapWJm1uddvCrQZ9UVt1o1q9+wDUTS/b0aZl0fxal+1PZb5ZFw1CaZnj4c1lTkZzOrwaFmx0wMcHYnQgR/PwUbklnKBNo0F+WTc9ucqyj5bikBrAkp+KfH9da3VfleZYjfnMlZy53qS5yYwq/gnOaqVYu6C+Arls1VcgFon+IWWd3e4b8GC0+7euS8gxsZyyWESYS0FkFIUB2ncnAqoxDSEJhYJyyuxRkyobewJPGWc45hxTyQiH0No/fkTjDie9HRBSOz0ov6xtYHeK28XH5rrMD1tO/Z9U1W5q1ztAiNZWqUWxzLVzERfYUJjT+6Tc3XrfYJ7X532l7RX3gGTpzI5qqxlU5GU3Jn50NPZlAxV2NNhR4N7ZTDack5g6CjcmfnRU4L3+aZ2mpFeT4F6MaVxCw8FR2DjXt2V+U5j2pl+0Jr0/aGrpf9msEz040DFL8gexnM9OHGx+r+tC550/A5KbctP48By5eqZTs4alP+gMoixY/4AH+N1ML2vdvzt3XZk3lzvFY1c923asPtTl+mOx/QyecPKA+ax/5bxJa1NZh0MJ1IB7ffCpzDQKSkg2vmcDEFRPbakA87TWNBCam3ZV1q7xgowCo427XK+hy0Ktcy64Z9LBzKnr36w9UZl8gaR2AsPIUHB+8EfMj3wNqbxaKdvkdVrnaq/rIzs4hj+X2al1wPhOBQjxyoNbae3dou2iAVXAzgXT6DkHn20hm95Dxwi+IEaX7OTvJsu0q6Q+pM1SF1vQEpIZtOLYPxjtcdfxf+0nO0isEzfbk47oK/FnjhG8uTY7tAD6CTS2AVr0ZAva31ywfov3EzFiof9T+Oc33q31rspNatrOlT1mZ+hZrQdw4H4NG1/0d0A8BN0Yw3G2IIK9AEPyOIZ4+nQUXdA0aNcj0QMBLjY84yVAv8i4LnUPVvtQ3m+aV1vWZew/1bLkqZZlnWUHF3T62gLkhYrx7kkeGxstLddrVWSocF3sr85oh65KYZtVvE02bb+z8Ey6q9+x/OJFVu9rJMH0j85KL7M7n1L4T2ApcRiFPCQOBTqlEQ3he0hyKuBz1X6TXAAlfhwUehmUv5nug/8YlwWYhPSefQqR2jbtf38vssVw/G28is1a16MycnLXfburfNM9lp+ozC+HzBg4clnPW720+89S87JmTcdx0OzVGeAlfkhPfQmqTEhCKuKYCXClOLS/noA3TR5xMutNdCqlDAWJI8ok5YRdyKX0ebnUrA+51Fk2tzHwsWihG9OuHTlvsu61rmxv+6n4XKuisT+eeZpR8/YNiD/V0NEsy0LlN7b2PYr0bgHN5BnSyWWkj0ppcg5z/zl+sRF6LdD4DGjSZWvcZetzgP8UJL8NwIDsie0P3YfDIDmz//Vzcv71i+JM+jbUDokfXo/A42l7Qr9TPdmLqufFBHZ9ZtLseckr+wuT16e7u0a31oCMe4sR+rTcdloe2JH/T0g0xRGNMAVEqIxh/n+Uy2bjzzT3U0j3q/77/wFQSwcIg6ng8SEHAAByGAAAUEsBAhQAFAAIAAgAiomKQEXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACKiYpAg6ng8SEHAAByGAAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAALkHAAAAAA==" showResetIcon = "false" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Parabelns egenskaper i GeoGebra 1
Datorövning: Malin C GGB-övning
GeoGebra med styrlinje och fokus
<ggb_applet width="792" height="319" version="4.0" ggbBase64="UEsDBBQACAAIACI+i0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAiPotAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbM1YW2/bNhR+bn/FgZ42ILZFSZTswm6RFihWIO0KpBuGvVESY7ORRE2kbTnoj98hKclyLkWSDkOBurwdnst3blSWb9qygB1vlJDVyiNT3wNeZTIX1XrlbfXVZO69ef1yueZyzdOGwZVsSqZXXmQoRb7yeHRFgyiYT/J4wScRZYtJms8Xk5DmPA+veJgmmQfQKvGqkp9YyVXNMn6ZbXjJLmTGtBW80bp+NZvt9/tpL2oqm/VsvU6nrco9QDUrtfK6yStkd3JpH1rywPfJ7K+PF479RFRKsyrjHhgTtuL1yxfLvahyuYe9yPVm5c19NGPDxXpjbKKRBzNDVCMgNc+02HGFV0dLa7Mua8+Sscqcv3AzKAZzPMjFTuS8WXn+NKAeyEbwSnenpJMy6+8vd4LvHSMzszJQFS1lkTLDA759g8APfDgzA3FDgEMcuyPf7fmhGwI3RG6gjiZy1yNHGjmayNFEoQc7oURa8JV3xQqFmInqqkF/DWulDwW3+nQbR3vJGdqkxA0ShwZRBzLu+/6Z+cX4i8zB7NRIMpKqm+0ThfYi6Tx5vMjgR0SGvcjgPisD+oCV8XfAdTo8xkxCRzJRlP1nf3ckhsETJLr1jwmMo//FxOWsz5RllxygNoa286TmpTLpEi6ALkzUE6CYGnGCQU6BLHBIAsBkAEIhorgkc4jNmECY4EEEIczB0JEQbG7QOf4XJZZZDBSZmd0EUxIICoqAhkBsSkWAiQQ2LTFFgxApKAWKl4x4EhgWYQxRjKtwDhHqaDIyIUgY4kVco/gAQgKhuUwSCGKIDT8SmUyP50Z1ZBlA7ENMDENMakxol8xIP4fQWBN3cImq3uoTiLIy76da1oMvkBrL0bHMufJ0UgVfLAuW8gIbw6XxJMCOFSYjrKArWWnonRi4vXXD6o3I1CXXGm8p+Mp27IJp3r5HatXLtrSZrNTnRup3stiWlQLIZOEPOsuCjObBoDUuwtFBND6go4N4NE/ulSvxBLaKo3zZqJ6c5fkHQ3EsDYjk71VxeNtwdl1LcWrGcmZ7zJJvs0LkglV/YrAaKQYX6FuOrVZ9ywl90isim/zyoDCCof2bNxJxTOJpnERJTJM4ChYRptjBnQSUTsnCX5AwoYsEuy92GJUxk3shmYbEj+eLBY0jGuNFvPXAWSea7wYPsZYPxq8bk9id4WbxQb2VxXHLmv+O1Xrb2McC1sbGGHVerQtuQ8QmNnbi7DqV7aWLjdDx+nKoceU7BdK1hR0aaxkSdGPqRktjNBuofEvjWwq/DzaRD+dkEVgKO6ZutFQYvU61zlLSm0n8XoxQtqD53kna2NA3fX1bCX3RL7TIro+WGvpP2zLlQwCdsiT/Ecvl7FaALa95U/Gii2f05FZulUvPUajnPBMlLt1BBwgzzvoDFXC7OV83vNe7sM8wB5c99cehemfbsnrfyPJDtfuCkXBLgeWs13KpskbUJuAgxR5wzY8xlQvFsIXk43smAdH0zLQKhEcbaDA1t3ojG/vSwoqCo8m7gpf4ygJtg8v4ekCZ2feagRNk+hVr2i0vjHDC83sDjVCMXVbUG2YedZ3RBTvw5gQGy/CjzG+Dg9hbCzDDa8PAeLfm3MWF7tIBamRos+mkRiHeClonFg7dM/1m5U3IoMcQ2BpL7jU+KzFg6Iixmfwm8pzbduvy/p/KXVEu3nhbFyITuosxB+YdWKttyRuRDcjh1dyCi+ZuO6PDaeREPAz4MT8ewtsfoU0eiXZHpwrz9oZSVJZNyRA7bIksVdheNH58YJBXx48Pp1hXnvEhZ9DFG2Ey7/GmiZldiZYP3ROjT9xgtrETY+71Q/B9Pzw/Nh7vpfYeL5Ee1p/ASxPauYk+3U3zIS0I+fnd1NYNSjNsOozf4hd3i/x+MT46A5NPv/bsbI91r7NT/3YHA4sfdaPtt88tbscCZULKeMIUAFOghvpk9TVPgJNXo9u91UnGaGWyLFmVQ2W/Iz6zhqWycLXcPW2ZbwFkxJR4Z+FW9weZY9cxuYMhNpZRhmTP6xD46fxANjwRxGdVcLHm1Q51xTcrQOv3HcLvW0Q/aUnXLOBAOqIbMnIPBnYjWjjv6c97qvPApNU0wSfrOT61J24zstzQ1ef4yp4EfbW/3VBEeX9DmY1bun02d3/yef0vUEsHCPX7kV9KBgAAjxIAAFBLAQIUABQACAAIACI+i0BFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAIj6LQPX7kV9KBgAAjxIAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADiBgAAAAA=" showResetIcon = "false" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Andragradsfunktionens graf
vertex är kurvans vändpunkt
nollställen
positivt före x2-termen betyder minimipunkt
negativt före x2-termen betyder maximipunkt
symmetrilinje genom vertex
Digitala rutan
Sidan 159.
Gör den i GeoGebra.
Kvadratiska modeller
Så här ser andragradsfunktionen ut på allmän form:
y(x) = ax2 + bx + c
c anger var grafen skär y-axeln. a gör bland annat parabeln smalare eller bredare. bx-termen ger en diagonal förflyttning av hela kurvan (något förenklat uttryckt).
Exempel 1
Exempel 1 handlar om att man har en måttsatt bild och ska anpassa den allmänna funktionen y(x) = ax2 + bx + c till dessa mått.
Här är det smart att placera origo symmetriskt i bilden och att kika på ställena där grafen skär x-axeln och där den skär y-axeln.
Uppgift: Anpassa den allmänna funktionen till vattenstrålen i bilden. Strålen når 2 m långt och är 1.5 m hög. {clear}}
Exempel 2
Exempel 2 i boken handlar om att titta på nollställena för en funktion för att hitta vertex mitt emellan nollställena och sätta in x-värdet och räkna ut y-värdet (högsta punkten i detta fall).
Parabelns egenskaper i GeoGebra 2
I Malins övning skriv kurvan på annan form (x-k)2, osv. Nyttigt men vi hinner inte göra den på lektionstid. Gör den gärna hemma!
Digitala rutan samt detta avsnitt sid 160-164 ersätts av en Övning i Geogebra på Vertex och faktorform av Malin C.
Överkurs: Andra kägelsnitt Av Malin C. Pröva själv att konsttruera med hjälp av mittpunktsnormaler.
Överbliven provupgift (svår)
Bilden visar en kastparabel.
Tänk dig att kastbanans högsta punkt är 35 m.
Längden på kastet är 110 m.
Utgå från formen för andragradsfunktionen y(x) = ax2 + bx + c
Gör en matematisk modell av kastbanan.
Exponentialfunktioner och logaritmer
Exponentialfunktioner
må lektion 1
y = Cax
växande a > 1
avtagande a < 1
skärningspunkt med y-axeln
a ej lika med 1, a > 0
Linjära och exponentiella modeller
må lektion 2 v 16
Logaritmer och funktionen y = 10x
Logaritmen för ett tal a är den exponent x till vilket ett givet tal, basen b, måste upphöjas för att anta värdet a:
- a = bx
Logaritmernas uppfinnare anses skotten John Napier (1600-talet) vara.
Texten ovan från Wikipedia
Vad är logaritmer?
Tisdag
Ett praktiskt val av bas när man använder den decimala notationen är (10-logaritmen): den exponent x till vilken man ska upphöja 10 för att få talet a:
- a = 10x <==> x = log10a
Andra beteckningssätt för log10 a är log a och lg a.
Räkneregler för logaritmer
Sats: Multiplikation
lg(a b) = lg a + lg b
Sats: Division
lg (a/b) = lg a - lg b
Sats: Potensräkning
lg ap = p lg a
Logaritmiska modeller
Aktivitet richterskalan
Ekvationen 2x = 3
Tillämpningar på exponentiell förändring
Aktivitet: När kan du dricka ditt kaffe?
Fler funktioner
y = 1 / x är diskontinuerlig
y = lg x
y = x0.5 (roten ur x)