Kärnkraftsincidenten i Japan mars 2011: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
(28 mellanliggande sidversioner av samma användare visas inte) | |||
Rad 5: | Rad 5: | ||
'''Bilder''' | '''Bilder''' | ||
* [http://www.svd.se/nyheter/utrikes/bildspecial/bildspel-tsunamin-i-japan_5998761.svd SvD] | * [http://www.svd.se/nyheter/utrikes/bildspecial/bildspel-tsunamin-i-japan_5998761.svd SvD] | ||
'''teknik''' | '''teknik''' | ||
* [http://www.vattenfall.se/sv/sa-fungerar-ett-karnkraftverk.htm Så funkar ett kärnkraftverk] | * [http://www.vattenfall.se/sv/sa-fungerar-ett-karnkraftverk.htm Så funkar ett kärnkraftverk] | ||
Rad 13: | Rad 11: | ||
* [http://www.human-academy.com/vetenskaper/naturvetenskap/karnfysik.asp AIC om fission, mm] | * [http://www.human-academy.com/vetenskaper/naturvetenskap/karnfysik.asp AIC om fission, mm] | ||
== | == Lektion 1 == | ||
Jobba i par och välj ett område att jobba med. | Jobba i par och välj ett område att jobba med. | ||
Rad 34: | Rad 32: | ||
* Vilka kärnkraftsverk har vi i Sverige? | * Vilka kärnkraftsverk har vi i Sverige? | ||
== Lektion - | == Lektion 2 - Strålning == | ||
'''Film på SLI''' | '''Film på SLI''' | ||
Rad 42: | Rad 40: | ||
'''Tänk på!''' Det blir lätt redigeringskonflikter. uppdatera ofta. Spara ofta. Fråga om det är någon som håller på med det avsnitt ni vill ändra på. Backa och gör om ifall det blir redigeringskonflikt. | '''Tänk på!''' Det blir lätt redigeringskonflikter. uppdatera ofta. Spara ofta. Fråga om det är någon som håller på med det avsnitt ni vill ändra på. Backa och gör om ifall det blir redigeringskonflikt. | ||
'''Uppgift''' | |||
'''Uppgift''' | Gör en ordlista | ||
Ni får en ordförklaring att göra | |||
== Lektion 3 - Film och redigering == | |||
* Vi kollar ett mycket bra youtubeklipp som sammanfattar energiproduktionen i Sverige. | |||
<youtube>lpQ9pjWFpwY</youtube> | |||
'''SLI''' | |||
* Filmen [http://www.sli.se/prodinfo.asp?a=DVD%201466&page=default.asp&sid=995eb71f-423b-43a0-8e52-cf79eec5282d&db=4&e=&g=012-016&w=k%E4rnkraft&s=-1&p=1&st=0&sub=&ss=1&otyp=product&lev=&tlang=&slang= kärnenerg] är 17 minuter och går grundligt igenom hur kärnkraften används för att ge energi. Begrepp: anrikning, upparbetning, bränsslestavar, slutförvaring, styrstavar, etc. | |||
'''Uppgift 1''' | |||
# ni får en text var att placera under lämplig rubrik på klasswikin. | # ni får en text var att placera under lämplig rubrik på klasswikin. | ||
# | # Texten finns på wikiskola - No år 7 lektion 3 | ||
# Kopiera den till klasswikin där vi jobbar med kärnkraftsolyckan i japan | |||
'''Uppgift 2''' | |||
# sätt mellanrubriker i de texter vi håller på med | # sätt mellanrubriker i de texter vi håller på med | ||
'''Uppgift 3''' | |||
# Skriv fler ordförklaringar till ordlistan. Skriv på de ord som saknar förklaring. | |||
'''Texter att använda''' | |||
'''A.''' Kärnkraft eller atomkraft avser utvinning av energi ur atomkärnor, antingen genom att spjälka tunga atomkärnor (framförallt uran) eller genom att slå ihop lätta atomkärnor (väte). | |||
'''B.''' Neutroner och protoneri atomkärnan hålls ihop av en kraft som kallas stark växelverkan. | |||
'''C.''' En atomkärna strävar efter lägsta möjliga bindningsenergi. De kärnor i naturen som har detta, och därmed är mest stabila, är de som är ungefär av samma storlek som järn. Tyngre kärnor har därför i ett överskott på bindningsenergi. Detta gör det möjligt att utvinna energi ur atomkärnor. Fission utnyttjar att vissa kärnor som är tyngre än järn kan bli mer stabila genom att klyvas, och i den processen göra sig av med en del av sin överskottsenergi. | |||
'''D.''' Radioaktivitet kallas fenomenet när atomkärnor spontant omvandlas till andra typer av kärnor samtidigt som de avger joniserande strålning. Radioaktivitet kännetecknas av att det inte är några externa krafter eller energikällor inblandade utan kärnan sönderfaller spontant. | |||
'''E.''' Uran är ett vanligt grundämne som kan hittas både på land och i havet. Det är ungefär lika vanligt som tenn och 500 gånger vanligare än guld. De flesta typerna av berggrund innehåller uran, dock ofta i låga koncentrationer. För närvarande räknas de områden med minst 0,1 procent uran som ekonomiskt försvarbara att bryta uran från. Med nuvarande uranpriser och tillgängliga reserver beräknas uranreserverna räcka i 50 år med nuvarande användning. | |||
'''F.''' Om man ska mäta "farligheten" hos strålning, måste man ta hänsyn till flera faktorer. För det första strålningens typ. Alfastrålning når högst några millimeter i kroppen och är i princip ofarlig så länge strålkällan befinner sig utanför kroppen, skulle man däremot få i sig en alfastrålare, kan resultatet bli förödande. Gammastrålning går rakt igenom kroppen och kan orsaka cellskador i alla organ som kommer i vägen. Det är förstås också farligare att få hela kroppen exponerad än bara en arm eller ett ben. Detta gör att varje mått på farlighet måste ta hänsyn till dels hur mycket strålning som faktiskt trängt in i kroppen, dels hur mycket vävnad som blivit utsatt. SI-enheten för biologisk exponering, så nära ett mått på "farlighet" som man kommer, är Sievert (Sv). Enheten sievert har en kvalitetsfaktor som beror på strålningens typ. Denna multipliceras med den absorberade energin per kilogram kroppsvikt. Det är ett förenklande mått, men har visat sig fungera bra vid helkroppsexponering, som för arbetare i kärnkraftverk. | |||
'''G.''' Härdsmälta är en typ av olycka som innebär att den radioaktiva härden i en kärnreaktor blir så varm av sin egenalstrade värme att den smälter. Beroende på reaktortyp kan följderna bli mer eller mindre allvarliga. Många kärnkraftverk är konstruerade för att klara av en härdsmälta med ringa konsekvenser för omgivningarna. Risken för allvarliga konsekvenser vid härdsmälta är mycket liten om kraftverket byggs och hanteras såsom det är tänkt. Vid Harrisburgolyckan 1979 blev konsekvenserna försumbara för omgivningen. Vid Tjernobylolyckan 1986 däremot ledde fundamentala konstruktionsbrister kombinerat med felaktigt handhavande till katastrof. | |||
'''H.''' Ett grundämnes atomnummer är antalet protoner i kärnan hos en atom av grundämnet. Det är atomnumret som bestämmer grundämnets position i det periodiska systemet. Atomnumret betecknas med Z. En oladdad atom (till skillnad från en atomjon) har lika många elektroner som protoner, så antalet elektroner i en oladdad atom är också lika med dess atomnummer. | |||
'''I'''. Naturligt uran innehåller 99,3 procent uran-238 och 0,7 procent uran-235. Uran-238 absorberar snabba neutroner och förhindrar kedjereaktioner. Därför använder man en metod som kallas anrikning vilket innebär att man höjer andelen uran-235. Uran som används i kärnreaktorer har en anrikningsgrad på 3-5 procent. | |||
'''J'''. Det använda kärnbränslet är radioaktivt avfall. Sådant avfall måste behandlas med stor försiktighet och eftertanke på grund av de långa halveringstiderna för en del av de radioaktiva isotoperna i avfallet. Nyligen använt avfall är så radioaktivt att en minuts strålning leder till döden, men radioaktiviteten avtar med tiden och efter 40 år är strålningsflödet en tusendel av vad det var när reaktorn stängdes, men ändå fortfarande farligt i hundratusentals år. Slutförvaringen av radioaktivt avfall är en svår utmaning. Det mesta avfallet förvaras för närvarande i tillfälliga lagerutrymmen medan permanenta förvaringsalternativ diskuteras. | |||
I Sverige är avfallsfrågan inte löst, också om kärnkraftsförespråkarna antar att den föreslagna metoden skall kunna användas. Kärnkraftsindustrin har själva ansvaret att hitta en plats och metod som innebär ett säkert slutförvar. För detta ändamål har kärnkraftsindustrin bildat bolaget Svensk Kärnbränslehantering, SKB. SKB:s arbete granskas av Strålsäkerhetsmyndigheten (SSM), av Kärnavfallsrådet samt av Miljörörelsen. | |||
''' | '''K.''' Utnyttjandet av kärnkraft för elektrisk ström har både förespråkare och motståndare. Kärnkraftförespråkarna pekar bland annat på fördelarna med elproduktion med mindre utsläpp av koldioxid. Kärnkraftsmotståndarna menar bland annat att både för- och efterbehandlingen av kärnbränsle medför oacceptabla risker, miljömässigt ekonomiskt och säkerhetsmässigt. | ||
== Lektion 4 - Kärnkraftsomröstningen i Sverige == | == Lektion 4 - Kärnkraftsomröstningen i Sverige == | ||
'''Uppgift:''' Se filmen nedan och anteckna svåra ord. | |||
Genomgång av de svåra orden. | |||
'''SLI''' | '''SLI''' | ||
Rad 63: | Rad 102: | ||
'''Harrisburg''' | '''Harrisburg''' | ||
Kärnkraftsolyckan i Harrisburg (Three Mile Island) i USA fick stora konsekvenser. Så här i efterhand är det inte rankat som en av de största olyckorna. Olyckan i Tjernobyl var större. Men det som hände i harrisburg fick stort genomslag i debatten om kärnkraften. Många människor blev medvetna om riskerna med kärnkraft. | Kärnkraftsolyckan 1979 i Harrisburg (Three Mile Island) i USA fick stora konsekvenser. Så här i efterhand är det inte rankat som en av de största olyckorna. Olyckan i Tjernobyl var större. Men det som hände i harrisburg fick stort genomslag i debatten om kärnkraften. Många människor blev medvetna om riskerna med kärnkraft. | ||
'''Protester i Sverige''' | '''Protester i Sverige''' | ||
Rad 69: | Rad 108: | ||
Det växte fram en proteströrelse krng linje tre som var kärnkraftsmotståndarnas alternativ i omröstningen. Många inom kultur och samhällsliv tog ställning. De flesta punkare var till exempel emot kärnkraften, se nedan. | Det växte fram en proteströrelse krng linje tre som var kärnkraftsmotståndarnas alternativ i omröstningen. Många inom kultur och samhällsliv tog ställning. De flesta punkare var till exempel emot kärnkraften, se nedan. | ||
I Sverige ledde debatten om kärnkraften till att vi hade en folkomröstning. Resultatet blev ett stopp för fortsatt utbyggnad av kärnkraften. | I Sverige ledde debatten om kärnkraften till att vi hade en [http://sv.wikipedia.org/wiki/K%C3%A4rnkraftsomr%C3%B6stningen folkomröstning] 1980. Resultatet blev ett stopp för fortsatt utbyggnad av kärnkraften. | ||
Det är svårt att bedöma riskerna med kärnkraft för å ena sidan är det en liten risk att något händer men å andra sidan kan det få mycket allvarliga konsekvenser om en olycka inträffar. Anledningen till de allvarliga konsekvenserna är dels att strålningen kan döda på kort sikt och att den skadar genom cancer, mutationer, mm på mycket lång sikt. Effekter av strålning kan visa sig femtio år senare. Om något blivit radioktivt går det heller inte att rena det. Radioaktiviteten sitter i tills den avklingat efter 10 000-tals år. Här kommer vi också in på problemet med lagringav kärnavfallet. | Det är svårt att bedöma riskerna med kärnkraft för å ena sidan är det en liten risk att något händer men å andra sidan kan det få mycket allvarliga konsekvenser om en olycka inträffar. Anledningen till de allvarliga konsekvenserna är dels att strålningen kan döda på kort sikt och att den skadar genom cancer, mutationer, mm på mycket lång sikt. Effekter av strålning kan visa sig femtio år senare. Om något blivit radioktivt går det heller inte att rena det. Radioaktiviteten sitter i tills den avklingat efter 10 000-tals år. Här kommer vi också in på problemet med lagringav kärnavfallet. | ||
Rad 81: | Rad 120: | ||
<youtube>FjuhW-4tyEI</youtube> | <youtube>FjuhW-4tyEI</youtube> | ||
'''Debatt''' | |||
* [http://www.svd.se/opinion/ledarsidan/har-vi-malat-fan-pa-vaggen-som-sig-bor_6019041.svd Ledare SvD] | |||
* [http://www.svd.se/opinion/brannpunkt/maria-wetterstrand-om-karnkraft_6010489.svd#after-ad Maria Wetterstrand: inlägg i SvD] | |||
'''Uppgift''' | |||
Diskutera i grupp om vi ska fortsätta med kärnkraften eller inte i Sverigge. | |||
Utse en diskussionsledare och en sekreterare. | |||
Diskussionsledaren fördelar ordet. Sekreteraren blogga vilka argument för och emot kärnkraften som kommer fram (för och nackdelar med kärnkraften). | |||
Var beredda på att sammanfatta era argument vid lektionens slut. | |||
== Lektion 5 - Sammanfatta vad vi lärt oss == | |||
Vi ska plugga på och förhöra varandra på ordlistorna. kanske sammanställer jag en lista utifrån de båda wikisarna. | |||
Vi ska rätta stavfel i texterna genom att vi tar oss an varandras texter. Vi ska fixa bilder till texterna. Vi ska presnetera denna text/område för varandra. | |||
Vi ska ha högläsning ur texterna. | |||
'''Om den fungerar''' | |||
[http://www.sli.se/prodinfo.asp?a=Sol7061&page=default.asp&sid=0&db=0&e=&g=012-016&w=k%E4rnkraft&s=-1&p=1&st=0&sub=&ss=1&otyp=product&lev=&tlang=&slang= Kärnenergin - Undergång eller räddning?] | |||
== Ordlista == | == Ordlista == |
Nuvarande version från 25 mars 2011 kl. 10.41
Det har inträffat en förfärlig jordbävning och tsunami i Japan vilket påverkat några kärnkraftverk. Det väcker frågor och vi ska besvara dem med hjälp av klasswikin.
Länkar
Bilder
teknik
Lektion 1
Jobba i par och välj ett område att jobba med.
uppgiften är att söka information, leta bilder och skriva en egen text som förklarar så mycket som möjligt inom området.
Kom ihåg! bara fria bilder och en text som du skrivit själv.
källor: Kopiera in adresen till sidorna du hämtat information ifrån. Det är viktigt att nage sina källor så att läsaren kan hitta mer information om denne vill..
områden att jobba med:
- kärnkraften (på atomnivå)
- radioaktiv strålning
- radioaktivt sönderfall
- kärnkraftverket
- härdsmälta
- olyckan i Tjernobyl
- var finns reaktorerna i japan?
- Vilka kärnkraftsverk har vi i Sverige?
Lektion 2 - Strålning
Film på SLI
Tänk på! Det blir lätt redigeringskonflikter. uppdatera ofta. Spara ofta. Fråga om det är någon som håller på med det avsnitt ni vill ändra på. Backa och gör om ifall det blir redigeringskonflikt.
Uppgift
Gör en ordlista
Ni får en ordförklaring att göra
Lektion 3 - Film och redigering
- Vi kollar ett mycket bra youtubeklipp som sammanfattar energiproduktionen i Sverige.
SLI
- Filmen kärnenerg är 17 minuter och går grundligt igenom hur kärnkraften används för att ge energi. Begrepp: anrikning, upparbetning, bränsslestavar, slutförvaring, styrstavar, etc.
Uppgift 1
- ni får en text var att placera under lämplig rubrik på klasswikin.
- Texten finns på wikiskola - No år 7 lektion 3
- Kopiera den till klasswikin där vi jobbar med kärnkraftsolyckan i japan
Uppgift 2
- sätt mellanrubriker i de texter vi håller på med
Uppgift 3
- Skriv fler ordförklaringar till ordlistan. Skriv på de ord som saknar förklaring.
Texter att använda
A. Kärnkraft eller atomkraft avser utvinning av energi ur atomkärnor, antingen genom att spjälka tunga atomkärnor (framförallt uran) eller genom att slå ihop lätta atomkärnor (väte).
B. Neutroner och protoneri atomkärnan hålls ihop av en kraft som kallas stark växelverkan.
C. En atomkärna strävar efter lägsta möjliga bindningsenergi. De kärnor i naturen som har detta, och därmed är mest stabila, är de som är ungefär av samma storlek som järn. Tyngre kärnor har därför i ett överskott på bindningsenergi. Detta gör det möjligt att utvinna energi ur atomkärnor. Fission utnyttjar att vissa kärnor som är tyngre än järn kan bli mer stabila genom att klyvas, och i den processen göra sig av med en del av sin överskottsenergi.
D. Radioaktivitet kallas fenomenet när atomkärnor spontant omvandlas till andra typer av kärnor samtidigt som de avger joniserande strålning. Radioaktivitet kännetecknas av att det inte är några externa krafter eller energikällor inblandade utan kärnan sönderfaller spontant.
E. Uran är ett vanligt grundämne som kan hittas både på land och i havet. Det är ungefär lika vanligt som tenn och 500 gånger vanligare än guld. De flesta typerna av berggrund innehåller uran, dock ofta i låga koncentrationer. För närvarande räknas de områden med minst 0,1 procent uran som ekonomiskt försvarbara att bryta uran från. Med nuvarande uranpriser och tillgängliga reserver beräknas uranreserverna räcka i 50 år med nuvarande användning.
F. Om man ska mäta "farligheten" hos strålning, måste man ta hänsyn till flera faktorer. För det första strålningens typ. Alfastrålning når högst några millimeter i kroppen och är i princip ofarlig så länge strålkällan befinner sig utanför kroppen, skulle man däremot få i sig en alfastrålare, kan resultatet bli förödande. Gammastrålning går rakt igenom kroppen och kan orsaka cellskador i alla organ som kommer i vägen. Det är förstås också farligare att få hela kroppen exponerad än bara en arm eller ett ben. Detta gör att varje mått på farlighet måste ta hänsyn till dels hur mycket strålning som faktiskt trängt in i kroppen, dels hur mycket vävnad som blivit utsatt. SI-enheten för biologisk exponering, så nära ett mått på "farlighet" som man kommer, är Sievert (Sv). Enheten sievert har en kvalitetsfaktor som beror på strålningens typ. Denna multipliceras med den absorberade energin per kilogram kroppsvikt. Det är ett förenklande mått, men har visat sig fungera bra vid helkroppsexponering, som för arbetare i kärnkraftverk.
G. Härdsmälta är en typ av olycka som innebär att den radioaktiva härden i en kärnreaktor blir så varm av sin egenalstrade värme att den smälter. Beroende på reaktortyp kan följderna bli mer eller mindre allvarliga. Många kärnkraftverk är konstruerade för att klara av en härdsmälta med ringa konsekvenser för omgivningarna. Risken för allvarliga konsekvenser vid härdsmälta är mycket liten om kraftverket byggs och hanteras såsom det är tänkt. Vid Harrisburgolyckan 1979 blev konsekvenserna försumbara för omgivningen. Vid Tjernobylolyckan 1986 däremot ledde fundamentala konstruktionsbrister kombinerat med felaktigt handhavande till katastrof.
H. Ett grundämnes atomnummer är antalet protoner i kärnan hos en atom av grundämnet. Det är atomnumret som bestämmer grundämnets position i det periodiska systemet. Atomnumret betecknas med Z. En oladdad atom (till skillnad från en atomjon) har lika många elektroner som protoner, så antalet elektroner i en oladdad atom är också lika med dess atomnummer.
I. Naturligt uran innehåller 99,3 procent uran-238 och 0,7 procent uran-235. Uran-238 absorberar snabba neutroner och förhindrar kedjereaktioner. Därför använder man en metod som kallas anrikning vilket innebär att man höjer andelen uran-235. Uran som används i kärnreaktorer har en anrikningsgrad på 3-5 procent.
J. Det använda kärnbränslet är radioaktivt avfall. Sådant avfall måste behandlas med stor försiktighet och eftertanke på grund av de långa halveringstiderna för en del av de radioaktiva isotoperna i avfallet. Nyligen använt avfall är så radioaktivt att en minuts strålning leder till döden, men radioaktiviteten avtar med tiden och efter 40 år är strålningsflödet en tusendel av vad det var när reaktorn stängdes, men ändå fortfarande farligt i hundratusentals år. Slutförvaringen av radioaktivt avfall är en svår utmaning. Det mesta avfallet förvaras för närvarande i tillfälliga lagerutrymmen medan permanenta förvaringsalternativ diskuteras.
I Sverige är avfallsfrågan inte löst, också om kärnkraftsförespråkarna antar att den föreslagna metoden skall kunna användas. Kärnkraftsindustrin har själva ansvaret att hitta en plats och metod som innebär ett säkert slutförvar. För detta ändamål har kärnkraftsindustrin bildat bolaget Svensk Kärnbränslehantering, SKB. SKB:s arbete granskas av Strålsäkerhetsmyndigheten (SSM), av Kärnavfallsrådet samt av Miljörörelsen.
K. Utnyttjandet av kärnkraft för elektrisk ström har både förespråkare och motståndare. Kärnkraftförespråkarna pekar bland annat på fördelarna med elproduktion med mindre utsläpp av koldioxid. Kärnkraftsmotståndarna menar bland annat att både för- och efterbehandlingen av kärnbränsle medför oacceptabla risker, miljömässigt ekonomiskt och säkerhetsmässigt.
Lektion 4 - Kärnkraftsomröstningen i Sverige
Uppgift: Se filmen nedan och anteckna svåra ord.
Genomgång av de svåra orden.
SLI
Harrisburg
Kärnkraftsolyckan 1979 i Harrisburg (Three Mile Island) i USA fick stora konsekvenser. Så här i efterhand är det inte rankat som en av de största olyckorna. Olyckan i Tjernobyl var större. Men det som hände i harrisburg fick stort genomslag i debatten om kärnkraften. Många människor blev medvetna om riskerna med kärnkraft.
Protester i Sverige
Det växte fram en proteströrelse krng linje tre som var kärnkraftsmotståndarnas alternativ i omröstningen. Många inom kultur och samhällsliv tog ställning. De flesta punkare var till exempel emot kärnkraften, se nedan.
I Sverige ledde debatten om kärnkraften till att vi hade en folkomröstning 1980. Resultatet blev ett stopp för fortsatt utbyggnad av kärnkraften.
Det är svårt att bedöma riskerna med kärnkraft för å ena sidan är det en liten risk att något händer men å andra sidan kan det få mycket allvarliga konsekvenser om en olycka inträffar. Anledningen till de allvarliga konsekvenserna är dels att strålningen kan döda på kort sikt och att den skadar genom cancer, mutationer, mm på mycket lång sikt. Effekter av strålning kan visa sig femtio år senare. Om något blivit radioktivt går det heller inte att rena det. Radioaktiviteten sitter i tills den avklingat efter 10 000-tals år. Här kommer vi också in på problemet med lagringav kärnavfallet.
Ett tredje problem är att terrorister kan komma över vapenplutonium.
Hasse och Tage var ett mycket populärt komikerpar förr i tiden. Här får du Tage Danielssons sketch om Harrisburg.
Debatt
Uppgift
Diskutera i grupp om vi ska fortsätta med kärnkraften eller inte i Sverigge.
Utse en diskussionsledare och en sekreterare.
Diskussionsledaren fördelar ordet. Sekreteraren blogga vilka argument för och emot kärnkraften som kommer fram (för och nackdelar med kärnkraften).
Var beredda på att sammanfatta era argument vid lektionens slut.
Lektion 5 - Sammanfatta vad vi lärt oss
Vi ska plugga på och förhöra varandra på ordlistorna. kanske sammanställer jag en lista utifrån de båda wikisarna.
Vi ska rätta stavfel i texterna genom att vi tar oss an varandras texter. Vi ska fixa bilder till texterna. Vi ska presnetera denna text/område för varandra.
Vi ska ha högläsning ur texterna.
Om den fungerar
Kärnenergin - Undergång eller räddning?
Ordlista
aggregat
alfastrålning
atomklyvning
becquerel
betastrålning
bränslestav
fission
gammastrålning
generator
gigaWatt, GW
grundämne
isotop
joniserande strålning
Kedjereaktion
kondenskraft
kondensor
kärnvapen
neutronstrålning
radioaktivitet
reaktor
rörelseenergi
Sievert
styrstav
turbin