Algebra och modeller: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
(30 mellanliggande sidversioner av 2 användare visas inte) | |||
Rad 1: | Rad 1: | ||
__NOTOC__ | |||
= Teori = | |||
{{malruta | Algebra och modeller | |||
Vi ska lära oss lite grunder i GeoGebra. Dessutom ska vi öva oss på att skapa uttryck och att använda dem vid modellering. | Vi ska lära oss lite grunder i GeoGebra. Dessutom ska vi öva oss på att skapa uttryck och att använda dem vid modellering. | ||
} | }} | ||
== | === Matematisk modellering === | ||
En beskrivning av en situation är en modell, använder vi matematik för att beskriva situationen så har vi en matematisk modell. Det vi vill att våra matematiska modeller ska göra är att assistera och hjälpa oss i våra beräkningar och förutsägelser. En matematisk modell kan ta ett avancerat system eller process, och beskriva den på ett enklare sätt. | |||
Modellering kommer sällan ensamt, för att kunna skapa en modell med bra överensstämmelse, så behöver vi först läsa om det problem, process eller system vi har och som vi vill skapa en matematisk modell för. När vi har modellen, så vill vi uppskatta vårt resultat med hjälp av modellen, och se om det är några ändringar som behöver göras. Vi behöver sedan utvärdera och validera. När vi väl validerat, så vill vi beräkna. Det här kan vi göra flera gånger. Modellera, uppskatta, utvärdera och beräkna. När vi känner oss trygga med vår matematiska modell, och upplever att den ger en god uppskattning av verkligheten, så kan vi beskriva vår modell. | |||
En del modellering går snabbt, annan modellering går mer långsamt. En del modeller kommer självklart, medan andra tar tid att få på plats. | |||
=== Uttryck och modeller === | === Uttryck och modeller === | ||
==== | Matematisk modellering har använts för att lösa problem, inte bara inom teknik och fysik, men även i biologi och sjukvård. | ||
När vi har ett problem som vi kan beskriva med ett algebraiskt uttryck har vi en modell av problemet. | |||
Att arbeta med modelleringsuppgifter i undervisningen innebär att elever utifrån olika vardagliga | |||
och andra utommatematiska situationer skapar och använder en matematisk modell. | |||
Det innefattar att tolka resultat som den matematiska modellen ger samt utvärdera modellen | |||
och att klargöra dess begränsningar och förutsättningar. Modelleringsprocessen innebär | |||
ett utforskande arbetssätt där elever prövar, diskuterar och justerar sin modell. Det är | |||
ett arbetssätt som leder till ett aktivt lärande och ett mer produktivt sätt att tänka i matematik | |||
(Lesh & Zawojewski, 2007). Genom modelleringsaktiviteter kan elever även på ett naturligt | |||
sätt komma i kontant med situationer som visar olika tillämpningar av matematik | |||
och dess betydelse för andra ämnesområden. | |||
{{exruta| '''Modelluppgift 1 - Matsalsbordets area''' | |||
Ebbe och Siri besöker en möbelaffär för att köpa ett matbord och vill att bordsskivan | |||
ska ha form av en kvadrat. I möbelaffären finns matbord med rektangulära bordsskivor | |||
men inget där bordsskivan är en kvadrat. De bestämmer sig då för att köpa det | |||
matbord där bordskivan är mest lik en kvadrat. Hjälp dem att bestämma en metod för | |||
att avgöra vilken bordsskiva som är mest lik en kvadrat. | |||
}} | |||
{{exruta| '''Modelluppgift 2 - knutar på rep''' | |||
Slå en knut på ett rep. Hur mycket kortare blir repet? Slå fler knutar på repet och mät repets | |||
längd för varje ny knut. Upprepa för rep av olika tjocklek. Ställ upp en matematisk modell | |||
som för varje rep anger hur mycket kortare repet blir då man slår x knutar på repet. Vilka | |||
förutsättningar krävs för att modellerna ska fungera? Hur stort kan x vara? | |||
}} | |||
''Texten ovan från [http://hkr.diva-portal.org/smash/get/diva2:789898/FULLTEXT01.pdf Skolverket].'' | |||
= Aktivitet = | |||
==== Förbered dig för GeoGebrauppgiften ==== | |||
Det är viktigt att du följer instruktionerna till punkt och pricka. Fråga om något är oklart. | Det är viktigt att du följer instruktionerna till punkt och pricka. Fråga om något är oklart. | ||
Skapa en modell (på papper) | Skapa en modell (på papper) | ||
Rad 42: | Rad 62: | ||
# Kontrollera att ditt uttryck för b stämmer. | # Kontrollera att ditt uttryck för b stämmer. | ||
Nu har du en modell som du är bekant med. För att förstå den bättre ska du nu skapa en dynamisk modell i GeoGebra. Följ instruktionerna nedan. | Nu har du en modell som du är bekant med. För att förstå den bättre ska du nu skapa en dynamisk modell i GeoGebra. Följ instruktionerna på nästa flik. | ||
= GeoGebra = | |||
=== Rektangelns area === | |||
{{uppgruta|'''Rita rektanglar''' | |||
Gå till GeoGebra.org. Välj Start Graphing. | |||
* En rektangel har sidan a och omkretsen 40. | |||
* Skapa ett uttryck för rektangelns andra sida. | |||
* Skapa en glidare för sidlängden a. | |||
* Skapa rektangeln i GeoGebra och dra litet i glidaren. | |||
* Vad kommer du till för slutsatser. När har rektangeln störst area? Diskutera med en kamrat. | |||
'''Detaljerad instruktion''' finns nedan. | |||
}} | |||
{{clear}} | |||
=== Detaljerad instruktion för att rita rektangeln === | |||
# Gå till [https://www.geogebra.org/?lang=sv GeoGebra] | |||
# | # Skapa en glidare och döp den till a (om den inte blivit det automatiskt) | ||
# Skapa en glidare och döp den | # Använd verktyget Sträcka med bestämd längd. Skapa en sträcka med längden a. Nu kan du variera längden med hjälp av glidaren. | ||
# Använd verktyget Sträcka med bestämd längd. Skapa en sträcka med längden a. Nu kan du variera längden | # Ändra egenskapern på sidan a så att längden visas. | ||
# Vrid sträckan 90<sup>o</sup> genom att ta tag i högra punkten och dra. | # Vrid sträckan 90<sup>o</sup> genom att ta tag i högra punkten och dra. | ||
# Från förra sträckans startpunkt drar du nu en ny sträcka med bestämd längd. Men denna gång skriver du in ditt uttryck som motsvara b | # Från förra sträckans startpunkt drar du nu en ny sträcka med bestämd längd. Men denna gång skriver du in ditt uttryck som motsvara b | ||
# Skapa | # Skapa en likadan stracka med uttrycket som motsvarar b, men denna gång är startpunkten i slutet av sträcka a. | ||
# | # Rita en polygon med hörnen i dina fyra punkter. | ||
# Markera hela rektangel och ställ in att egenskaperna för att värdet (arean) ska visas. | |||
# Dra i glidaren och undersök hur arean ändras. | # Dra i glidaren och undersök hur arean ändras. | ||
# Vilken form ger den största arean? | # Vilken form ger den största arean? | ||
{{ | {{viktigt| '''Dynamiska modeller''' | ||
Sidan a var en parameter i den modell som du skapade genom uttrycket 20-a för sträckan b som funktion av a. På det viset kan du undersöka rektangelns egenskaper vid olika former. | Sidan a var en parameter i den modell som du skapade genom uttrycket 20-a för sträckan b som funktion av a. På det viset kan du undersöka rektangelns egenskaper vid olika former. | ||
}} | }} | ||
== Läs | === GeoGebra === | ||
'''Film:''' [https://www.youtube.com/watch?v=uRRS6Gesxcw Skapa uttryck], av Håkan Elderstig | |||
Vi ska använda uttryck (och formler) för att skapa modeller som vi undersöker i GeoGebra. Nedan visar jag några exempel på rektanglar som skapats på olika sätt. Nedan finns en film som visar hur glidaren används för att ändra formen. | |||
{{clear}} | |||
<html> | |||
<iframe scrolling="no" title="rektanglar" src="https://www.geogebra.org/material/iframe/id/CQmPE4gJ/width/657/height/574/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="657px" height="574px" style="border:0px;"> </iframe> | |||
</html> | |||
{{clear}} | |||
<html> | |||
<iframe width="560" height="315" align="left" src="https://www.youtube.com/embed/uRRS6Gesxcw" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> | |||
</html> | |||
= Lär mer = | |||
{| wikitable align=right | |||
|- | |||
| {{sway | [https://sway.com/V1RZewjYnTvwvaBk?ref{{=}}Link Algebra och modellerk]}}<br /> | |||
{{gleerups| [https://gleerupsportal.se/laromedel/exponent-1c/article/6d9f789b-cca6-42be-82e6-9b247de088c2 Formulera uttryck: Bra exempel] }}<br /> | |||
{{matteboken |[https://www.matteboken.se/lektioner/matte-1/algebra/uttryck-och-variabler Uttryck och variabler (igen)] }}<br /> | |||
|} | |||
=== Läs === | |||
* [https://www.geogebra.org/b/JV45hyEh#material/xMHv8tVY GeoGebra Geometry Quickstart] | * [https://www.geogebra.org/b/JV45hyEh#material/xMHv8tVY GeoGebra Geometry Quickstart] | ||
* [http://ncm.gu.se/pdf/namnaren/2126_13_3.pdf Matematiska modeller och modellering – vad är det?] | |||
* [http://hkr.diva-portal.org/smash/get/diva2:789898/FULLTEXT01.pdf Lärportalen för matematik, matematiska modeller] | |||
=== Theo Jansen === | === Theo Jansen === | ||
Att arbeta med uttryck, koefficienter och parametrar som vi gjort ovan är ett kraftfullt verktyg för att skapa dynamiska modeller och konstruktioner Titta på Theo Jansens [ | Att arbeta med uttryck, koefficienter och parametrar som vi gjort ovan är ett kraftfullt verktyg för att skapa dynamiska modeller och konstruktioner Titta på Theo Jansens [http://www.strandbeest.com/ Strandbeest] nedan. | ||
<html> | <html> | ||
Rad 77: | Rad 145: | ||
<iframe width="560" height="315" src="https://www.youtube.com/embed/MYGJ9jrbpvg" frameborder="0" allowfullscreen></iframe> | <iframe width="560" height="315" src="https://www.youtube.com/embed/MYGJ9jrbpvg" frameborder="0" allowfullscreen></iframe> | ||
</html> | </html> | ||
== Exit ticket == | == Exit ticket == | ||
KM: Exit ticket: Uttryck | KM: Exit ticket: Uttryck | ||
<headertabs /> |