Komplexa tal Ma2C: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) (Skapade sidan med ' === Teori === {{defruta|'''Komplexa tal''' <br /> :<math>\sqrt{-1} = i </math> : <math> i^2 = -1 </math> <br /> Ett komplext tal består av en realdel <math>a</math> och e...') |
Hakan (diskussion | bidrag) |
||
Rad 26: | Rad 26: | ||
[http://www.wolframalpha.com/input/?i=x^2%3D-16 x<sup>2</sup> = -16] har ingen reell rot men däremot två komplexa. Det beror på att lösningen är roten ut ett negativt tal. Roten ur -16 är +4i respektive -4i. | [http://www.wolframalpha.com/input/?i=x^2%3D-16 x<sup>2</sup> = -16] har ingen reell rot men däremot två komplexa. Det beror på att lösningen är roten ut ett negativt tal. Roten ur -16 är +4i respektive -4i. | ||
[http://www.wolframalpha.com/input/?i=x^2%2B3x%2B16%3D0 x<sup>2</sup>+3x+16=0] har också två komplexa rötter fast här | [http://www.wolframalpha.com/input/?i=x^2%2B3x%2B16%3D0 x<sup>2</sup>+3x+16=0] har också två komplexa rötter fast här består varje rot av både en realdel och en imaginärdel. | ||
{{clear}} | {{clear}} |
Nuvarande version från 3 januari 2016 kl. 21.08
Teori
Definition |
---|
Komplexa tal
Ett komplext tal består av en realdel [math]\displaystyle{ a }[/math] och en imaginärdel [math]\displaystyle{ b }[/math].
|
Läs mer: Komplexa tal på wikipedia
Vad ska man ha komplexa tal till?
- Komplexa tal används när man räknar på växelström.
- Titta på denna ppt från Uppsala.
- j-omegametoden
Komplexa rötter
x2 = -16 har ingen reell rot men däremot två komplexa. Det beror på att lösningen är roten ut ett negativt tal. Roten ur -16 är +4i respektive -4i.
x2+3x+16=0 har också två komplexa rötter fast här består varje rot av både en realdel och en imaginärdel.