|
|
(10 mellanliggande sidversioner av 2 användare visas inte) |
Rad 1: |
Rad 1: |
|
| |
|
| === Konjugatregeln === | | === Konjugatregeln === |
| | {{lm2c|Konjugatregeln|22-24}} |
|
| |
|
| Så här ser den ut:
| | : Så här ser den ut: |
|
| | |
| a<sup>2</sup>-b<sup>2</sup> = (a-b)(a+b)
| | : a<sup>2</sup>-b<sup>2</sup> = (a-b)(a+b) |
|
| | |
| utför multiplikationen:
| | : <math> (a-b)\cdot(a+b) </math> |
|
| |
| (a - b)(a + b) = a<sup>2</sup> + ab - ba - b<sup>2</sup>
| |
|
| |
| vi kan stryka ab - ba = ab - ab = 0:
| |
|
| |
| (a - b)(a + b) = a<sup>2</sup> - b<sup>2</sup>
| |
|
| |
| V.S.B.
| |
|
| |
|
| === Konjugatregeln med <math> <math>\LaTeX</math> </math> ===
| | : <math>= a^2 +a\cdot b -a\cdot b -b^2 </math> |
| | : |
| | : vi kan stryka ab - ba = ab - ab = 0: |
|
| |
|
| Så här ser ''beviset'' ut:
| | : <math>= a^2-b^2 </math> |
| | | |
| <math>(a-b)\cdot(a+b) </math>
| | : V.S.B. |
|
| |
| <math>= a^2 +a\cdot b -a\cdot b -b^2 </math>
| |
|
| |
| <math>= a^2-b^2 </math>
| |
|
| |
| <math>\blacksquare</math>
| |
|
| |
|
| === Film === | | === Film === |
Rad 55: |
Rad 44: |
| Denna är gjord med Geogebra, sparad som animerad gif, upladdad till WIKIMEDIA COMMONS och länkad hit. | | Denna är gjord med Geogebra, sparad som animerad gif, upladdad till WIKIMEDIA COMMONS och länkad hit. |
| | | |
| (a-b)(a+b) = a² - b²</p> | | <math>(a - b)\cdot(a + b) = a^2 - b^2 </math> |
|
| |
|
| <applet name="ggbApplet" code="geogebra.GeoGebraApplet" archive="geogebra.jar" | | <html> |
| codebase="http://jars.geogebra.org/webstart/4.2/unsigned/"
| | <iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/390017/width/1188/height/912/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="1188px" height="912px" style="border:0px;"> </iframe> |
| width="1669" height="929">
| | </html> |
| <param name="ggbBase64" value="UEsDBBQACAgIACeiY0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAnomNCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1c23LbNhq+bp8Cw53JNLsRjRNPidyOkzpOZpO2U2c7O3sHiZDEiCK1JGXLmTzHPkH3vu1FHyC57zPtD4CUSB1sSZZreZNIIEic/u8/4ieU9jfTUYwuZJZHaXJsERtbSCbdNIyS/rE1KXot3/rm6y/bfZn2ZScTqJdmI1EcW9ym1rwf1GzKVOcoPLZ6vZCKkPmtnhBui3sObQlMwxYhQUi8gElHQmc0zaOnSfqdGMl8LLryvDuQI/Em7YpCjzkoivHTo6PLy0u7mt1Os/5Rv9+xp3loIVh5kh9b5cVTGK7R6ZLp5hRjcvTPt2/M8K0oyQuRdKWFFFWT6Osvv2hfRkmYXqLLKCwGgIEbuBYayKg/ADoJZlA7Us3GQO1YdovoQubQuVbVVBejsaWbiUQ9/8JcoXhGkIXC6CIKZXZsYZsAEJQ71GeY+L7rWyjNIpkUZVtSznlUjda+iOSlGVZd6Rk5DjxgQpRHnVgC7CLOga4o6WWAKSwom0A1L65i2RFZVZ+vhzyBv9Ag+iDVWMA8AwRUAvyEcvLEw/iJw3yzlvrEFirSNNajYuQE6ONHRDHF6IkqiCkoFK5rHmFzDzNTUFNwUzimDTfduWnKTRtu2nB2DZ1lfU5oeaNBaUUnq9NJgD71ceGjAVig06/RSRQRHxFRq9cFQ2rdRK9fFbysuqbq6YJgU5Dyoa++NF7uLSliO1FEarMaedhm0mpKwl2++Zx0izkXZXRGJV1FJXXWUHlLcGd0OrVJYS79T3+WpmR0mymXVHGHGRULdtf9HSb0cEPtK503JSnL62DY26LaR5U1bJcLQvlAtS3Fq5CjXC2RBdo4IYIcUF7XA1viIBJA4Sklpog4iDtQJT5yVekhpvSWI4Z8pNoRhrQJcnz44lqnXeTAWOqmZ5QbMY4chog2XBwBCkgbP8CEMmjhOMiBTmp2oqZlLuIuVJiPOCxQmT1PmRYG/aAOk1PECGKqL/EQdZFLkadMJ+HKorq+WjsMSpGLkau6gu0Eu2lsJvTwEVPUgBaM0zyagTuQ8XjGFY1jlIwnRYldeb87Cisci3SheZh2h88XwJYiL6praAQea+4XjQdruM0v2rHoyBjCi3MlBwhdiFipuR6/lyYFqmSAmnv9TIwHUTc/l0UBvXL0XlyIN6KQ05fQOq8WqKfW/rwtJ904CiOR/ARCooZQA6KZe9e2q3LvAQ7MNN00zcLzqxxEB03/JbMUTI5vB/U/joWuzBMeuM1HMGLeFUrmedB84gMTrtY888zU8mJGm5jKGUWon+lgal55nT9P4/mtcRolxQsxLiaZjtbAVmaKqpOkH0uNruY6xD3dYSednhtYmRnr3dUYatisoNN/kcZphkAnqQNk9suyY0rdRi1t1grrNli3wBWfonD2nARUt9Blx5S6FTDeLK0klVRkElxNE+Xa2sDgDbnUYqOCqEkSFW+qShF1h3NSVYfvJqMOSFxNLmqDkr0N2j5aELO2iHWMWgmdmEyjOBLZVV1bdMdGw/ZQZomMjQgmIAWTdJIbpagRMMnlD6IYnCThj7IP6vyDUBa1gCWZptXgoKKyG42go7lfoi6URPwDSDR3Q9nPZAWNWYzhiX6K6wqxdFsP9TJLR6+Ti3cgbgtLbR9V9LTzbhaNlVijDpj4oZwLbhjlAhxEWO8HxOdARVcZK2BAocAfpsn7SV8UmezLOLGQmBSDFKTr1P47DAImAGQevRUAAsUg1zqUT7NhPpCyeCenBRKd9AIafSVancdfib91HqNjJD79hlqo8+k3EEwZK858/s9FAssEu/b00V8Ifqa/ZA/QRSEopkCw/QCwsygfCugD7g0NRQJuDmWffx4mYt6JPAbvEjA0VWGtB5N9o2/Tx+jN599zNP30WyuAuxj1Pv8OeiJlHAt08fnnLJQJGn/+L5ra88FWfZ3/dPIjeorMZI2ZOMIY609LeZVj8GBgYVDgEA2vjOUIdheo0GqvLcdM+k80ckpKUdp5D5Z65pnN85ocwvOVNkBbCxGPB0LtbUpRicUVQFiXQz3g2zRcFCmQWM13sL5jo3NjKY26mgXDxRiG02authwto4Cr2rgysMFXMJPtgsX9YLayZtumiFXGz0zq1O/OxZuWSm1wugGx5/8HiDm2QzVizN4PYN10NBJJiBId6/2Qxlf9NLHmUYbAStSQIAo/JKjaRhqIJkX1vOxFTDNhmnWgYMdWFwoOxgsK59h6AYV7bH1rVlHOvYJtZhUVY2bjN31RAQHGEPbZud6sFKVr1BevohCUU+F5tBPPK39a+co5z+kSz8l6nq+XzFz2VW22DrGbbK5f57Js4utkcy5hLWwHRim5TXwtY63A9p2A1MKjxbBgc1aA2MRKvl8nyg9K7TmWPedQyrGKdb5P3mUiyVX6qukyN0e2c8/IziOKBZ9fgxyQ9hrhp8ZfcYItxrLADura3PGceWvnAbGjewM75vjsgxvf93q5LDTGBtPVBpptzKpFluiNwmoOftB7EUocUrt734wCWmDroXyQvi22Y154X8wjxum1nFuyb5FNgR52iancmD3fJpjM9SzgB8c+FRNvEwK9WGZgc0+1moMq0d03RccUd2gNue0YXfVsb4VOrQt42OqA5wY/3ITn2wcAD7Y5rv8hngbLtf2mr9gLWIvRoQKrGRuKpWjw9Kbgro746R5icszvNyYHgWXcgT2b63CHE+KXATrzfA7s8Zmr3xV5f1q8frpZvE5NM2ma9Uy83jfx+sDE6y9NvH62U7xO/7x4fb083FG8LnfyhNuI7Wo7wVaE6xRijMCnxGU+IYxwWjk13+GY+yCb3PF95UKVU6M2o5wyh3JwaASuD86r3eDRFlnRu19WbBLfL/HCqwL8Ju+oZyJ816bMA6NBXcd1wbgspWEfGIv6d2/lb+9WF9SoiuwXeYeZZhGYd86ZyzzssQDCxPsP7Tdnx+AhsGPZel2t4ZKyag5stDwMTzA8c1zOD3lP3AyBXj6AoBPgDerBjFcmiJwGk+idB+hnDwArbjNCg8ANeIA9gM11SrDAWvjYBfyIy0tDv9/4/LzU82Y0WGZvz5bCwOj6qG7RakQ3Yb+B2dhPhpLYHq5Byct8GbUDrwH8zDa41MEeGGmXBAyi8oMyDU0Wvo3C8Ypd1pnh4ckSD19ts9l6dd/aM+chtSG4AcYB9xwGF6zcMzmEBJgxHIAdZ3eiJG+jLEuz1TumV0v4vt4G39e74UuoyY/pcoOXTBtCTGzYitY3oNV7I95wrPwOjLZ+3Tyj+o9fNS7QcVJ1r2bLY3WyEo2iRGvcSEzV4Y6/fvoFAOjkaTwp5Hk3kzKZHzA1kcrsWAhXx1cVtVhfqUyIvuhFUzk7EjNIs+hDmhRNk73bloHgZVNGNuQR2cHyVIcBsm6NK2uyF4ArUQpFA6qyzhwunOWEBl6V0FivMD+mhSjkgsK8NgrTAt7q7MHzZc15JMZp/mwr/Sm73N7PPEQV2gD1sxtRP9se9bPDQP2gI6uV3Di5kRsn23Pj5DC40Tij0UwsB5ud2Ngj0Kc3An26PdCnhwb0XtLIuyb2V6aRS4TM9mFWoXNDrTPGNSFflWVmZZa53r9f7x/NKhwih80YuTLfzA7ifIizDf+3SDivE9d7PCayKkOznI8uUzQPKkOzlMDcCP39vv6+JumPba8ZlxhH2GI2CRompPSF2PY5JQyQ5xy2VtS9d+i3f5G9lI64B5bUTiTwm4+T7J7NJHaAAz9gHmMQ5NBgl33DIeX/xa187d1Yr5UatEaBWp7yzYEKLjF2fNe7/xcyO74TPikduHG9yznBsjM3rd+b1kPTOjYuerSTc+brnTPbg3PupkkYmZ0wNP++bP3Hr+hRv3iG8Kdf1otV/TcTc9EKlkRrL++N399SB1YvdlkPrlnsLRzJohpcZ5du4Oqf7sKHh4X8xvETxdW5p6ZPuM4EHRr28cFhv5X13yp+OjTsR4eF/Z2+2L0H7KfjDKZWjqeEU/2EiVgIHhxbj/49SYtnJqdxlKUwqzC39DBNvhXQz2oOstNeb/PXbdcejMsLkRX6wB8qs0C0furQcC2weeMuq+cm6jAd1X8opn/zWf7fEF//D1BLBwgKNUdU9AsAAMtCAABQSwECFAAUAAgICAAnomNCRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIACeiY0IKNUdU9AsAAMtCAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAjAwAAAAA" />
| |
| <param name="java_arguments" value="-Xmx1024m -Djnlp.packEnabled=true" />
| |
| <param name="cache_archive" value="geogebra.jar, geogebra_main.jar, geogebra_gui.jar, geogebra_cas.jar, geogebra_algos.jar, geogebra_export.jar, geogebra_javascript.jar, jlatexmath.jar, jlm_greek.jar, jlm_cyrillic.jar, geogebra_properties.jar" />
| |
| <param name="cache_version" value="4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0, 4.2.23.0" />
| |
| <param name="showResetIcon" value="false" />
| |
| <param name="enableRightClick" value="false" />
| |
| <param name="errorDialogsActive" value="true" />
| |
| <param name="enableLabelDrags" value="false" />
| |
| <param name="showMenuBar" value="false" />
| |
| <param name="showToolBar" value="false" />
| |
| <param name="showToolBarHelp" value="false" />
| |
| <param name="showAlgebraInput" value="false" />
| |
| <param name="useBrowserForJS" value="true" />
| |
| <param name="allowRescaling" value="true" />
| |
| Detta är en Java Applet skapad med GeoGebra från www.geogebra.org - det verkar som om du inte har Java installerat på din dator, vänligen besök www.java.com
| |
|
| |
|
| This is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com
| | [http://www.geogebratube.org/material/show/id/390017 Länk till filen] |
| </applet>
| |
|
| |
|
| === Uppgifter === | | === Uppgifter === |
Rad 86: |
Rad 59: |
| | | |
| 2. Lös <math>x^2-1=0</math> för alla reella x. | | 2. Lös <math>x^2-1=0</math> för alla reella x. |
| | |
| | ''Tips : Använd konjugatregeln och nollregeln för ekvationen.'' |
|
| |
|
| {{khanruta|'''Khan: Parentesmultiplikation''' | | {{khanruta|'''Khan: Parentesmultiplikation''' |