Primtal: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
(46 mellanliggande sidversioner av samma användare visas inte) | |||
Rad 1: | Rad 1: | ||
__NOTOC__ | |||
= Teori = | |||
{{malruta | Primtal | |||
Du kommer att lära dig om primtal, sammansatta tal och primtalsfaktorer. Du kommer att kunna primtalsfaktorisera. | Du kommer att lära dig om primtal, sammansatta tal och primtalsfaktorer. Du kommer att kunna primtalsfaktorisera. | ||
} | }} | ||
== | === Definitioner mm === | ||
Alla positiva tal är uppbyggda av primtal (minst ett). Man kan dela upp dem i faktorer som är primtal. Primtal är bara delbara med ett och sig själva. (positiva tal) | |||
{{defruta| '''Primtal''' | |||
Ett primtal är ett naturligt tal, som är större än 1 och som inte har några andra positiva delare än 1 och talet självt. | |||
}}<br> | |||
=== Eratosthenes såll === | |||
[[Fil:Sieve of Eratosthenes animation.gif|400px|vänster|https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif]] | |||
: | |||
{{clear}} | {{clear}} | ||
== | === Historik mm === | ||
{{#ev:youtube |GRwod6hAJe8 | 400 | right | Primtal. }} | |||
{{#ev:youtube |6Z0y3NyPNkw | 400 | right| Erathostenes, primtal och faktorisering.}} | |||
När vi tittar på våra naturliga tal (alla heltal från 1, dvs. n = 1, 2, 3, 4, 5, 6, ...) så kan vi dela in dem i två grupper; Primtal, och sammansatta tal. | När vi tittar på våra naturliga tal (alla heltal från 1, dvs. n = 1, 2, 3, 4, 5, 6, ...) så kan vi dela in dem i två grupper; Primtal, och sammansatta tal. | ||
Rad 67: | Rad 46: | ||
Primtalen kan alltså ses som våra första tal, talen vi bygger upp alla andra tal med hjälp utav. | Primtalen kan alltså ses som våra första tal, talen vi bygger upp alla andra tal med hjälp utav. | ||
Det finns oändligt många primtal, något som den grekiske matematikerna Euklides visade redan 300-talet fvt (före vår tideräkning). | Det finns oändligt många primtal, något som den grekiske matematikerna Euklides visade redan 300-talet fvt (före vår tideräkning). | ||
{{clear}} | |||
= Aktivitet = | |||
=== Intro - helklass === | |||
[[File:Prime rectangles.png|400px | right |Prime rectangles]] | |||
Primtalsorm (3-5 min) | |||
Alla står upp | |||
Läraren säger ett tal till första eleven som svarar ja eller nej på frågan om det är ett primtal. Fel svar betyder man får sätta sig ner. | |||
'''Diskussion''': Hur vet man om det är ett primtal? | |||
=== Fortsatta diskussioner - EPA m=== | |||
: Exempel: Är 23 ett primtal? | |||
: Exempel: Är 2301 ett primtal? | |||
: Pröva själv på talen: 39, 114, 4007 | |||
Demonstrera Wolfram Alpha | |||
: Skapa uppgifter åt varandra | |||
: Dela in tavlan i olika delar och låta dem komma fram och primtalsfaktorisera samtidigt. | |||
{{clear}} | |||
= Exempel = | |||
<pdf>Fil:Uppgift_primtalsfaktorer.pdf</pdf> | |||
= Uppgifter = | |||
{{uppgfacit| | |||
Vilka två primtal har summan 99? | |||
| | |||
Om summan av två tal är udda måste ett av talen vara udda och det andra jämnt. | |||
Det finns bara ett jämnt primtal, nämligen 2. | |||
99 - 2 = 97. Är 97 ett primtal? Ja. | |||
}} | |||
= Python = | |||
=== Pythonprogrammet hittar primtal === | |||
[[Kategori:Python]] [[Kategori:Ma1c]] [[Kategori:Aritmetik]] [[Kategori:Årskurs 7-9]] | |||
{{python|[[Python|Python-hjälp]]}} | |||
{{malruta| '''Kom igång med programmering i matematiken.''' | |||
Målet är att du ska köra enkla färdiga program för att utföra matematiska beräkningar. | |||
Du bör testa att modifiera algoritmen så att dina beräkningar blir mer effektiva. | |||
Målet är inte att du ska lära dig programmering på matematiklektionen men det är oundvikligt att du ändå lär dig lite Python-kod. | |||
}} | |||
== | == Uppgift == | ||
Man kan antingen använda programmet som intro till en lektion om primtal i Ma1c. Det tar inte många minuter men vänjer eleverna vid att köra program. | |||
Eller så arbetar man med att undersöka och förbättra algoritmen vilket tar betydligt mer tid. | |||
== Koden == | |||
Vi använder en funktion som testar om tal är ett primtal. Resten av koden är för inmatning och utmatning av resultatet. | |||
<pre> | |||
def prime(input): | |||
for n in range(2, input): | |||
if input % n == 0: | |||
return False | |||
return True | |||
tal = int(input("Ange ett tal ")) | |||
if (prime(tal) == True): | |||
print(tal, " är ett primtal") | |||
else: | |||
print(tal, " är inte ett primtal") | |||
</pre> | |||
För att förbättra algoritmen, se diskussionssidan. | |||
= | = GeoGebra , mm= | ||
=== Öva själv === | |||
<html> | |||
<iframe scrolling="no" src="https://www.geogebratube.org/material/iframe/id/99352/width/1387/height/378/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5" width="1387px" height="378px" style="border:0px;"> </iframe> | |||
</html> | |||
'''Kalkylprogram'''. Pröva gärna att använda Excel för att undersöka om ett tal är ett primtal. | |||
''' | '''Datorövning.''' Lär dig mer om ett tal genom [http://www.wolframalpha.com/ WolframAlpha]. Du ser bland annat hur talet delas upp i faktorer. Skriv bara talet på raden och klicka enter. | ||
'''Datorövninga från matteva'''. [http://www.skolresurs.fi/matteva/huvudrakning/delbarhet.html Delbarhetsreglerna] | |||
= | = WikiMaster-quiz = | ||
<html> | <html> | ||
<iframe | <iframe width="800" height="800" src="https://wok.uno/en/Prime_number" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> | ||
</html> | </html> | ||
== Inspiration - En väl blandad kortlek är unik == | = Lär mer = | ||
{| align=right | |||
|- | |||
| {{sway | [https://sway.com/SMs2cH7E35P9whwN?ref{{=}}Link Primtal] }}<br /> | |||
|- | |||
| {{wplink|[https://sv.wikipedia.org/wiki/Primtal Primal] }}<br /> | |||
|- | |||
| {{matteboken |[https://www.matteboken.se/lektioner/matte-1/tal/primtal Primtal] }}<br /> | |||
|} | |||
=== Läs === | |||
: {{svwp | Lista_över_primtal}} | |||
: Här finns ett bra svar på engelska WP: https://en.wikipedia.org/wiki/Prime_number_theorem | |||
: Om du tittar på den svenska sidan får du bara formler till svar: https://sv.wikipedia.org/wiki/Primtalssatsen | |||
: Här ser du skönheten genom Ulam-spriralen: https://en.wikipedia.org/wiki/Ulam_spiral | |||
=== Inspiration - En väl blandad kortlek är unik === | |||
: [http://ed.ted.com/lessons/how-many-ways-can-you-arrange-a-deck-of-cards-yannay-khaikin?utm_source=TED-Ed+Subscribers&utm_campaign=6b931c9d3b-2013_09_219_19_2013&utm_medium=email&utm_term=0_1aaccced48-6b931c9d3b-46535169 TEDEd] | : [http://ed.ted.com/lessons/how-many-ways-can-you-arrange-a-deck-of-cards-yannay-khaikin?utm_source=TED-Ed+Subscribers&utm_campaign=6b931c9d3b-2013_09_219_19_2013&utm_medium=email&utm_term=0_1aaccced48-6b931c9d3b-46535169 TEDEd] | ||
=== Undersök och läs på === | |||
Blir det glesare mellan primtalen om man tittar på riktigt stora tal? | Blir det glesare mellan primtalen om man tittar på riktigt stora tal? | ||
== | == Exit ticket == | ||
Exit ticket: Primtal | |||
<headertabs /> |