Inledning komplexa tal: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
 
(3 mellanliggande sidversioner av samma användare visas inte)
Rad 1: Rad 1:
__NOTOC__
== Inledning ==
== Inledning ==
{{#ev:youtube | eAr3YbPgrIY | 340 | right |Magnus Rönnholm, CC}}
{{#ev:youtube | eAr3YbPgrIY | 340 | right |Magnus Rönnholm, CC}}
Rad 10: Rad 11:


=== Konjugatet ===
=== Konjugatet ===
Ett komplext tals konjugat kan bildas genom att spegla dess imaginärdel i ''x''-axeln:
:[[Fil:ComplexaTalplanet.svg|left|140px]]
{{clear|left}}
Konjugatet till ett komplext tal z = a + b i definieras som


: <math> \bar{z} = a - b\,\mathrm i </math>
: <math> \bar{z} = a - b\,\mathrm i </math>
Rad 31: Rad 38:
: <math>|z_1 \cdot z_2| = |z_1|\cdot |z_2|</math>
: <math>|z_1 \cdot z_2| = |z_1|\cdot |z_2|</math>
: <math>\left|{z_1 \over z_2} \right | = {|z_1|\over |z_2|}</math>
: <math>\left|{z_1 \over z_2} \right | = {|z_1|\over |z_2|}</math>
=== Öva online ===
{{khanruta |  [https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/adding-and-subtracting-complex-numbers/e/complex_plane_operations Graphically add & subtract complex numbers]
}}

Nuvarande version från 7 mars 2019 kl. 08.31

Inledning

Magnus Rönnholm, CC
[math]\displaystyle{ i^2 = -1 }[/math]
[math]\displaystyle{ z\ = a + b\,\mathrm i }[/math]
[math]\displaystyle{ Re z = a }[/math]
[math]\displaystyle{ Im z = b }[/math]

Konjugatet

Ett komplext tals konjugat kan bildas genom att spegla dess imaginärdel i x-axeln:

Konjugatet till ett komplext tal z = a + b i definieras som

[math]\displaystyle{ \bar{z} = a - b\,\mathrm i }[/math]

För konjugatet gäller

[math]\displaystyle{ \overline{z + w} = \overline{z} + \overline{w} \!\ }[/math]
[math]\displaystyle{ \overline{zw} = \overline{z}\; \overline{w} \!\ }[/math]
[math]\displaystyle{ \left| \overline{z} \right| = \left| z \right| }[/math]

Absolutbeloppet

Absolutbeloppet av ett komplext tal z = a + b i kan i det komplexa talplanet tolkas som avståndet från origo till punkten (a, b) och beräknas som

[math]\displaystyle{ r= \sqrt{a^2 + b^2} }[/math]

eller

[math]\displaystyle{ r= \sqrt{\mathrm{Re}(z)^2 + \mathrm{Im}(z)^2} }[/math]

För absolutbeloppet gäller

[math]\displaystyle{ |z_1 \cdot z_2| = |z_1|\cdot |z_2| }[/math]
[math]\displaystyle{ \left|{z_1 \over z_2} \right | = {|z_1|\over |z_2|} }[/math]

Öva online