Lektion 4 - Faktorisera: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
 
(20 mellanliggande sidversioner av 2 användare visas inte)
Rad 1: Rad 1:
{{Lm3c | Faktorisering | 56 ff}}
{{Lm3c | Faktorisering | 56 - 57}}


== Förstå begrepp ==
== Kvadreringsreglerna och konjugatregeln baklänges==
{{#ev:youtube | 7BXiiEFaWis | 340 | right |Faktorisering, av Åke Dahllöfr}}


{{defruta | '''Faktorisering'''
Att faktorisera ett uttryck är samma sak som att använda en kvadreringsregel eller konjugatregeln baklänges.
* Om andragradspolynomet <math>p(x)</math> har nollställen <math>x{{=}}a</math> och x{{=}}b kan vi faktorisera polynomet till <math>p(x) {{=}} k(x-a)(x-b)</math> där <math>k</math> är koefficienten framför <math>x^2</math>-termen
* Om ett andragradspolynom saknar nollställen, kan det inte faktoriseras!
* Om ett andragradspolynom har ett enda nollställe, t.ex. dubbelroten <math>x{{=}}a</math> kan polynomet skrivas på formen <math>p(x) {{=}} k  (x-a)(x-a) {{=}} k(x-a)^2</math>
}}
<br />


== Se och lyssna till begrepp och procedurer ==
{{defruta |
<math> a^2 + 2ab + b^2 = (a + b)^2</math>


{{#ev:youtube | pnr1FUrzhHU | 340 | left}}
<math>a^2 - 2ab + b^2 = (a - b)^2</math>
{{#ev:youtube | 5azzI7kGeBA | 340 | center}}


== Öva procedurer ==
<math>a^2 - b^2 = (a + b)(a - b)</math>


{{khanruta | [https://www.khanacademy.org/math/algebra/introduction-to-polynomials-and-factorization/factoring-polynomials-2-quadratic-forms/e/factoring_polynomials_with_two_variables Factorizing]}}
}}
=== Exempel ===


== Vad ska man ha det här till ==
Faktorisera uttrycket <math>4x^2 - 12xy + 9y^2 </math>


{{tnkruta | Funder på i vilka sammanhang man har nytta av detta}}
Vi använder andra kvadreringsregeln.


== Prova och testa modeller och resonemang ==
<math>4x^2 - 12xy + 9y^2 = (2x - 3y)^2 = (2x - 3y) (2x - 3y)</math>


<html>
Hur visste man det?
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/1126139/width/711/height/578/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="711px" height="578px" style="border:0px;"> </iframe>
</html>


== Använd digitala verktyg för att förenkla procedurer och lösa problem ==
: Tag roten ur första kvadrattermen och skriv efter första parentesen.
: Tag roten ur andra kvadrattermen och skriv före andra parentesen.
: Skriv tecknet före dubbla produkten mellan termerna i parentesen.
: Sätt ^2
: Kontrollera om dubbla produkten stämmer. Det gör den bara i tillrättalagda skoluppgifter.


<html>
: Om det saknas dubbleprodukt är det i stället konjugatregeln som används.
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/1059533/width/420/height/506/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="420px" height="506px" style="border:0px;"> </iframe>
</html>

Nuvarande version från 15 oktober 2015 kl. 22.23

Ma3C: Faktorisering , sidan 56 - 57


Kvadreringsreglerna och konjugatregeln baklänges

Faktorisering, av Åke Dahllöfr

Att faktorisera ett uttryck är samma sak som att använda en kvadreringsregel eller konjugatregeln baklänges.

Definition

[math]\displaystyle{ a^2 + 2ab + b^2 = (a + b)^2 }[/math]

[math]\displaystyle{ a^2 - 2ab + b^2 = (a - b)^2 }[/math]

[math]\displaystyle{ a^2 - b^2 = (a + b)(a - b) }[/math]


Exempel

Faktorisera uttrycket [math]\displaystyle{ 4x^2 - 12xy + 9y^2 }[/math]

Vi använder andra kvadreringsregeln.

[math]\displaystyle{ 4x^2 - 12xy + 9y^2 = (2x - 3y)^2 = (2x - 3y) (2x - 3y) }[/math]

Hur visste man det?

Tag roten ur första kvadrattermen och skriv efter första parentesen.
Tag roten ur andra kvadrattermen och skriv före andra parentesen.
Skriv tecknet före dubbla produkten mellan termerna i parentesen.
Sätt ^2
Kontrollera om dubbla produkten stämmer. Det gör den bara i tillrättalagda skoluppgifter.
Om det saknas dubbleprodukt är det i stället konjugatregeln som används.