Positionssystemet och olika talbaser

Från Wikiskola
Version från den 11 september 2018 kl. 06.46 av SimonG (diskussion | bidrag)
Hoppa till navigering Hoppa till sök
Mål för undervisningen Talbaser

Du kommer att lära dig om binära tal och andra talbaser samt hur man omvandlar mellan dem.

Swayen till detta avsnitt: Talbaser


läromedel: Romerska tal, mm


Läs om Talsystem


Aktivitet

Börja med teori

  • Hur skriver man ett tal på en viss bas?
  • Vilka talbaser är vanliga?
  • Hur omvandlar man?
  • Testa apparna nedan

Exempel

Omvandla binärt till decimalt

Omvandla decimalt till binärt

Hexadecimala talsystemet

Binära tal

Välj bas 10 eller 2 och dra i glidaren. Kontrollräkna för att se att du förstår.


A little tool to show an integer in all important bases quickly: Edit any of the four textfields and press enter - the three remaining Numbers will be converted.

https://www.geogebra.org/m/dDQCBAN3

Pythonprogram

Programmeringsuppgift

Omvandla till binärt med Python

Det här är ett förhållandevis komplicerat program för att komma så pass tidigt i kursen men vi testar det i alla fall och tittar på koden för att lära oss mer.

Teori

Decimala talsystemet (tiosystemet) är ett positionssystem som baseras på talet 10 och därmed använder 10 olika siffror (det normala antalet fingrar), 0–9. Sedan låter man siffrans position bestämma vilken 10-potens som siffran skall multipliceras med. På detta sätt blir talet

304 = 3·102 + 0·101 + 4·100. 

CC från Wikipedia

Ett exempel från boken:

Visa att 0,375 = 3/8

Binära talsystemet

Det binära talsystemet är en representation för tal som har talbasen två. Det betyder att enbart två olika siffror används, ett och noll. Binära tal används praktiskt taget av alla datorer eftersom de använder digital elektronik och boolesk algebra (eller binär algebra som det också kallas). I Europa var Juan_Caramuel_y_Lobkowitz Caramuel först med att beskriva det binära talsystemet som han då kallade Dyadik. Medan Gottfried Leibniz gjorde det känt för en bredare publik. Talsystemet upptäcktes dock långt tidigare av den forntida matematikern Pingala.

Det binära talsystemets talföljd består bara av två siffror, 0 och 1. Nästa tal är det, av de talen som kan skrivas med ettor och nollor, som kommer näst i sifferraden. Så talen blir: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10 000 o.s.v

De gamla egyptierna använde det binära talsystemet för att skriva bråktal i decimalform. De använde dock inte ettor och nollor, utan de använde sig av en symbol kallad 'Horus öga'. Olika delar av symbolen motsvarade olika positioner på höger sida om kommatecknet. Om just den delen ritades ut motsvarade det en etta på den positionen, om den utelämnades motsvarade det en nolla.

Precis som i det decimala talsystemet är den högra siffran minst signifikant. Med enbart den siffran kan talet 0 och 1 beskrivas. För att beskriva talet 2 måste en ny siffra skrivas till vänster om den första, det vill säga '10', varpå talet 3 följer representerat som '11'. Detta fortgår på samma maner ju högre upp man behöver komma.

Exempel på hur man kan skriva för att konvertera ett binärt tal till decimaltal:

Om det binära talet är 10101101 så är det decimala talet

 1·27 + 0·26 + 1·25 + 0·24 + 1·23 + 1·22 + 0·21 + 1·20 =

 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1 = 173

Om ett binärkomma finns närvarande så representerar siffrorna till höger om det en mot höger ökande negativ tvåpotens. Exempel:

   11,0012 = 1·21 + 1·20 + 0·2-1 + 0·2-2 + 1·2-3 = 2 + 1 + 0 + 0,125 = 3,12510

Vid representation av tal med decimaler är det dock idag mycket vanligare att använda IEEE:s flyttalsrepresentation

Horners metod

En intressant egenskap i det binära talsystemet är att en multiplikation med två erhålles genom att helt enkelt skifta alla siffror en plats åt vänster och sätta dit en nolla. Denna egenskap ger följande intressanta variant av Horners metod: För att enkelt beräkna det decimala värdet av ett binärt tal i huvudet behöver du bara läsa talet från vänster och multiplicera varje delsumma med två; om den binära siffran är en etta så addera dessutom en etta till summan. Man börjar med summan 0. Med samma exempelsträng som ovan (10101101) blir det så här:

 0·2+1=1 , 1·2=2, 2·2+1=5, 5·2=10, 10·2+1=21, 21·2+1=43, 43·2=86, 86·2+1=173

CC från Wikipedia

Lär mer

NCM - Tankeläsning med binära tal

NCM-pdf

UR-teori och övningar

UR-pdf


Wolfram

Skriv in ett tal i WolframAlpha. En bit ned på sidan ser du talet på hexadecimal, oktal och binär form. Exempel med talet 23.

Färgkoder

Läs om färgkoder

En övning på W3Schools.com: Färgkoder på hemsidor.

Testa hur det funkar i GGB


Exit ticket

Exit ticket: Talbaser