Derivatan för en funktion

Från Wikiskola
Hoppa till navigering Hoppa till sök
Den utskrivbara versionen stöds inte längre och kanske innehåller renderingsfel. Uppdatera din webbläsares bokmärken och använd standardutskriftsfunktionen istället.
[redigera]

Introduktion till derivatan

Introduktion till derivatan
Mål för undervisningen

Vi ska definiera derivatan i en punkt, vilket ger oss:

  • lutningen för en tangent genom punkten
  • ett värde för förändringen i den punkten

Vi ska göra en algebraisk beskrivning av riktningskoefficienten för en tangent i en punkt med hjälp av en sekant och gränsvärden.


Utgångspunkt

Vi har sett sekantens och tangents funktion att visa lutningen, d v s förändringen.

Begrepp

Vi kommer använda begreppen sekant, tangent, ändringskvot och gränsvärde.

Sekanten och derivatans definition

Genom att utgå ifrån en sekant kan vi definiera derivatan. Sekanten skär grafen i två punkter [math]\displaystyle{ P }[/math] och [math]\displaystyle{ Q }[/math]. Om Avståndet mellan punkterna minskar kommer sekanten allt närmare tangenten. Titta på bilderna nedan så ser du vad som händer när avståndet mellan [math]\displaystyle{ P }[/math] och [math]\displaystyle{ Q }[/math] krymper.

Men för att vi ska kunna använda gränsvärden skriver vi [math]\displaystyle{ P }[/math] och [math]\displaystyle{ Q }[/math] som [math]\displaystyle{ P = (x, f(x)) }[/math] och [math]\displaystyle{ Q = (x + h, f(x + h)) }[/math].

I de tre figurerna nedan ser du hur Q närmar sig P, d v s [math]\displaystyle{ h }[/math] minskar. Det innebär att sekantens lutning blir mer och mer lik tangentens lutning.

Det här gäller för en godtycklig punkt [math]\displaystyle{ x }[/math] men låt oss se hur det förhåller sig i punkten [math]\displaystyle{ (a,f(a)) }[/math].

Derivatan är lutningen i en punkt

Derivatan är tangentens lutning i (a, f(a))

Om en funktion f åskådliggörs av en graf y = f(x) så anger derivatan av f grafens lutning (förändring av y per förändring av x) för varje värde x. Derivatan i en punkt är således lika med riktningskoefficienten för kurvans tangent i den valda punkten [math]\displaystyle{ (x, f(x)). }[/math] Det vill säga [math]\displaystyle{ k = \frac{\Delta y}{\Delta x} }[/math]

Algebraisk beskrivning av derivatan

Derivatans definition

Om du ska räkna ut lutningen i en punkt får du problem. [math]\displaystyle{ k = \frac{\Delta y}{\Delta x} = \frac{0}{0} }[/math] och det går ju inte. Här behövs formell matematik.

Nu utgår vi från en punkt [math]\displaystyle{ (a,f(a)) }[/math] och så kallar vid punkten som närmar sig för [math]\displaystyle{ (a+h,f(a+h)) }[/math]. När [math]\displaystyle{ h }[/math] krymper kommer den andra punkten att närma sig den första. Man säger att h går mot noll och det skrivs

[math]\displaystyle{ \lim_{h \to 0} }[/math]

Detta kan sammanfattas på matematisk form och kallas derivata.

Definition

Derivatan av funktionen [math]\displaystyle{ f }[/math] i punkten [math]\displaystyle{ a }[/math] definieras som gränsvärdet

[math]\displaystyle{ f'(a)= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} }[/math]


Med denna form för att skriv derivatans definition kan man sätta in polynom och andra funktioner i definitionen, förenkla det rationella uttrycket och förkorta bort h i nämnare så att det går att beräkna gränsvärdet. Mer om hur det går till ser du under nästa flik - Exempel.

Derivatan skriven med variabeln x

Sätt [math]\displaystyle{ a + h = x }[/math]. Det ger ett nytt sätt att skriva derivatans definition.

Definition
Derivatans definition om [math]\displaystyle{ a + h =x }[/math]

Derivatans värde (lutningen k) i punkten där [math]\displaystyle{ x = a }[/math] skrivs:

[math]\displaystyle{ f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x-a} }[/math]

Detta är derivatan i punkten [math]\displaystyle{ (a, f(a)) }[/math]



Exempel
Derivatan i punkten [math]\displaystyle{ x=3 }[/math]

Tänk dig en fix punkt på en kurva (3, F(3) och en rörlig punkt med koordinaterna (x, f(x)). Sekantlinjen genom de två punkterna har lutningen:

[math]\displaystyle{ k = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(3)}{x-3} }[/math]

Låt sedan [math]\displaystyle{ x }[/math] minska så att [math]\displaystyle{ x }[/math] närmar sig 3. Då kommer f(x) att närma sig f(3) och linjen att tangera kurvan i punkten [math]\displaystyle{ (x,f(x)) }[/math]. Den linjen kallas för tangent.

Tangentens lutningen i punkten där [math]\displaystyle{ x = 3 }[/math] skrivs:

[math]\displaystyle{ k = \lim_{x \to 3} \frac{f(x) - f(3)}{x-3} }[/math]


Andra sätt att beteckna derivata

Man kan skriva derivatan på flera sätt

  • Derivatan av [math]\displaystyle{ f(x) }[/math] skrivs [math]\displaystyle{ f'(x) }[/math]
  • Derivatan av [math]\displaystyle{ y(x) }[/math] skrivs [math]\displaystyle{ y'(x) }[/math]
  • Ibland ser man exempelvis D 3x2 = 6x
[redigera]
Viktigt
Derivatans definition


[math]\displaystyle{ f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} }[/math]


Exempel 1

Använd derivatans definition.

Bestäm tangentens k-värde i punkten där [math]\displaystyle{ x = 2 }[/math] om [math]\displaystyle{ f(x) = 3 x^2 }[/math].

Fil:Derivatans definition - exempel.pdf.

Exempel 2

Använd derivatans definition för att bestämma f'(4) om f(x) = 3 x + 5.

[redigera]

Derivatans definition med glidare

[redigera]

Laborera med sekanten och derivatan för att förstå mer

Uppgift: Nedan ser du en GGB-konstruktion full av information men samtidigt lite svår att använda. Skapa en egen liknande konstruktion. Försök förbättra och förenkla.

[redigera]

Gissa derivatans utseende

Du kan skissa derivatans utseende genom att uppskatta funktionens lutning i grafen (alltså utan att känna till funktionen algeriskt).

Av Jonas Hall

[redigera]

Det finns ett papper med sex uppgifter där du ska använda derivatans definition.

Efter att du är klar med dessa går du in i Kunskapsmatrisen.

[redigera]

Pythonprogrammering derivata 1

Programmeringsuppgift

Derivatans definition i Python

Du kan ta fram ett beräknat, approximativt värde för derivatan i en punkt med hjälp av ett program.

Pythonprogrammering derivata alternativ 2

Programmeringsuppgift

Numerisk_derivering


[redigera]

Andra varianter på derivatans definition

Man kan definiera derivata på lite olika sätt. Här följer en geogebra fil där du kan flytta punkten A som du deriverar kring. Du kan också flytta två närliggande punkter. Om du vill ändra funktionen f måste du ladda ner filen härifrån [1]. Du flyttar A med slidern a. Avståndet (h eller delta h) till A för punkterna B och C med slidrers b och c. Linjen e motsvarar höger derivatan i punkten A när avståndet |C-A| går mot noll. På samma sätt motsvarar linjen d vänster derivatan då |B-A| går mot noll. Till slut är linjen g en variant av en sekant definition av derivata om |B-C| går mot 0.