Derivatan av 2^x: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Rad 4: Rad 4:
Denna lektion kommer du att lära dig hur man deriverar exempelvis <math>y = 2^x</math>.
Denna lektion kommer du att lära dig hur man deriverar exempelvis <math>y = 2^x</math>.
}}
}}
Vi skriver om 2 till <math> e^{ln 2} </math> för att få det på basen e och kunna använda potenslagarna och deriveringsreglerna som vi har med oss sedan tidigare.
<math> y = 2^x = (e^{ln 2})^x =e^{ln 2 \cdot x} </math>
Nu är det en funktion på formen <math> e^{k x} </math> och vi kan derivera som vanligt.
<math> y' = e^{ln 2} </math>


{{defruta | '''Derivatan av <math>y = a^x</math>'''  
{{defruta | '''Derivatan av <math>y = a^x</math>'''  

Versionen från 15 april 2016 kl. 08.29

Ma3C: Integraler , sidan 193-195
Mål för undervisningen

Denna lektion kommer du att lära dig hur man deriverar exempelvis [math]\displaystyle{ y = 2^x }[/math].


Vi skriver om 2 till [math]\displaystyle{ e^{ln 2} }[/math] för att få det på basen e och kunna använda potenslagarna och deriveringsreglerna som vi har med oss sedan tidigare.

[math]\displaystyle{ y = 2^x = (e^{ln 2})^x =e^{ln 2 \cdot x} }[/math]

Nu är det en funktion på formen [math]\displaystyle{ e^{k x} }[/math] och vi kan derivera som vanligt.

[math]\displaystyle{ y' = e^{ln 2} }[/math]

Definition
Derivatan av [math]\displaystyle{ y = a^x }[/math]


Om [math]\displaystyle{ f(x) = a^x }[/math] så är [math]\displaystyle{ f'(x) = ln \, a \cdot a^x }[/math] (a > 0)


Härledning med derivatans definition

Vid derivering av funktionen [math]\displaystyle{ a^x }[/math] där [math]\displaystyle{ a }[/math] är en konstant:

[math]\displaystyle{ a }[/math] kan skrivas som [math]\displaystyle{ e^{\ln a} }[/math] (se naturliga logaritmen]]) vilket innebär att [math]\displaystyle{ a^x }[/math] även kan substitueras med [math]\displaystyle{ e^{\ln a x} }[/math].

[math]\displaystyle{ f(x)= e^{\ln a x} }[/math]

[math]\displaystyle{ f^\prime(x) =\lim_{h\to 0}\frac{e^{\ln a (x+h)}-e^{\ln a x}}{h} }[/math]

[math]\displaystyle{ f'(x)=\lim_{h\to 0}\frac{e^{\ln a h}\cdot(e^{\ln a x}-1)}{h} }[/math]

[math]\displaystyle{ f'(x)=\lim_{h\to 0}e^{\ln a x} \cdot\frac{e^{\ln a h}-1}{h} }[/math]

Om [math]\displaystyle{ \ln a }[/math] nu tillsätts med ett värde, exempelvis 6 blir derivatan :

[math]\displaystyle{ f(x)= e^{6x} }[/math]

[math]\displaystyle{ f'(x)=\lim_{h\to 0}e^{6x} \cdot\frac{e^{6h}-1}{h} }[/math]

[math]\displaystyle{ f'(x)=6\cdot e^{6x} }[/math]

Detta innebär att denna allmänna formel för exponentialfunktioner av typen [math]\displaystyle{ e^{kx} }[/math], där [math]\displaystyle{ k }[/math] är en konstant lyder:

[math]\displaystyle{ f(x)=e^{kx} }[/math]

[math]\displaystyle{ f'(x)=k \cdot e^{kx} }[/math]

Om [math]\displaystyle{ k }[/math] substitueras med [math]\displaystyle{ \ln a }[/math] blir derivatan av exponentialfunktionen [math]\displaystyle{ a^x }[/math] följande, om [math]\displaystyle{ a^x=e^{\ln a x} }[/math]:

[math]\displaystyle{ f(x)=a^x }[/math]

[math]\displaystyle{ f'(x)=\ln a \cdot a^x }[/math]

Till nästa gång

Flippa = Gör detta till nästa lektion!

Lös uppgifterna 4133 - 4141. Läs på om Problemlösning exponentialfunktioner.